File size: 55,052 Bytes
5488167
 
 
 
 
 
48bb372
5488167
 
 
 
 
 
71922e7
5488167
 
 
 
 
 
 
 
 
 
 
 
1005670
48bb372
 
917a84f
 
48bb372
917a84f
71922e7
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
 
48bb372
71922e7
5488167
 
 
 
 
 
 
 
71922e7
 
5488167
71922e7
 
5488167
 
48bb372
5488167
 
 
d39a7e5
5488167
 
 
 
d39a7e5
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7cae0
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7cae0
5488167
 
 
 
 
 
 
48bb372
 
 
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
 
 
5488167
 
 
 
 
 
48bb372
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
48bb372
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
48bb372
 
566c01f
5488167
566c01f
5488167
 
48bb372
 
566c01f
48bb372
566c01f
 
 
 
 
 
 
5488167
48bb372
 
566c01f
 
48bb372
 
 
 
71922e7
48bb372
566c01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71922e7
 
d39a7e5
5488167
48bb372
d39a7e5
5488167
 
 
 
 
 
 
 
48bb372
5488167
 
 
48bb372
5488167
 
 
48bb372
5488167
48bb372
5488167
 
48bb372
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
 
 
48bb372
5488167
 
 
 
 
 
 
48bb372
5488167
 
48bb372
5488167
71922e7
5488167
566c01f
 
 
 
 
 
 
 
 
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566c01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39a7e5
566c01f
 
 
 
 
5488167
 
1005670
5488167
 
 
 
 
 
 
 
 
 
 
 
1005670
5488167
 
48bb372
5488167
 
 
 
 
 
 
1005670
5488167
 
48bb372
 
 
 
 
 
 
 
 
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
 
 
 
 
 
 
 
5488167
1005670
5488167
566c01f
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566c01f
5488167
 
 
 
 
 
 
 
 
 
 
 
566c01f
48bb372
 
 
 
 
 
 
566c01f
48bb372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566c01f
48bb372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566c01f
 
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bb372
 
 
 
 
 
 
 
5488167
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
import random
import time
import os
import re

import torch
import torch.nn as nn
from loguru import logger
from tqdm import tqdm
import json
import math
from huggingface_hub import hf_hub_download

# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps
from diffusers.utils.torch_utils import randn_tensor
from transformers import UMT5EncoderModel, AutoTokenizer

from language_segmentation import LangSegment
from music_dcae.music_dcae_pipeline import MusicDCAE
from models.ace_step_transformer import ACEStepTransformer2DModel
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
import torchaudio
import torio


torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision('high')
torch.backends.cudnn.deterministic = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["TOKENIZERS_PARALLELISM"] = "false"


SUPPORT_LANGUAGES = {
    "en": 259, "de": 260, "fr": 262, "es": 284, "it": 285, 
    "pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293, 
    "nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
    "ko": 6152, "hi": 6680
}

structure_pattern = re.compile(r"\[.*?\]")


def ensure_directory_exists(directory):
    directory = str(directory)
    if not os.path.exists(directory):
        os.makedirs(directory)


REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"


# class ACEStepPipeline(DiffusionPipeline):
class ACEStepPipeline:

    def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs):
        if not checkpoint_dir:
            if persistent_storage_path is None:
                checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
            else:
                checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
        ensure_directory_exists(checkpoint_dir)

        self.checkpoint_dir = checkpoint_dir
        device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu")
        if device.type == "cpu" and torch.backends.mps.is_available():
            device = torch.device("mps")
        self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
        if device.type == "mps" and self.dtype == torch.bfloat16:
            self.dtype = torch.float16
        self.device = device
        self.loaded = False
        self.torch_compile = torch_compile

    def load_checkpoint(self, checkpoint_dir=None):
        device = self.device

        dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8")
        vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder")
        ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer")
        text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")

        files_exist = (
            os.path.exists(os.path.join(dcae_model_path, "config.json")) and
            os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and
            os.path.exists(os.path.join(vocoder_model_path, "config.json")) and
            os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and
            os.path.exists(os.path.join(ace_step_model_path, "config.json")) and
            os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and
            os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and
            os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and
            os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and
            os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and
            os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json"))
        )

        if not files_exist:
            logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub")

            # download music dcae model
            os.makedirs(dcae_model_path, exist_ok=True)
            hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
                            filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
                            filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)

            # download vocoder model
            os.makedirs(vocoder_model_path, exist_ok=True)
            hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
                            filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
                            filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)

            # download ace_step transformer model
            os.makedirs(ace_step_model_path, exist_ok=True)
            hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
                            filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
                            filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)

            # download text encoder model
            os.makedirs(text_encoder_model_path, exist_ok=True)
            hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
                            filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
                            filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
                            filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
                            filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
            hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
                            filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)

            logger.info("Models downloaded")

        dcae_checkpoint_path = dcae_model_path
        vocoder_checkpoint_path = vocoder_model_path
        ace_step_checkpoint_path = ace_step_model_path
        text_encoder_checkpoint_path = text_encoder_model_path

        self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path)
        self.music_dcae.to(device).eval().to(self.dtype)

        self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype)
        self.ace_step_transformer.to(device).eval().to(self.dtype)

        lang_segment = LangSegment()

        lang_segment.setfilters([
            'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el',
            'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy',
            'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg',
            'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu',
            'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk',
            'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu'
        ])
        self.lang_segment = lang_segment
        self.lyric_tokenizer = VoiceBpeTokenizer()
        text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval()
        text_encoder_model = text_encoder_model.to(device).to(self.dtype)
        text_encoder_model.requires_grad_(False)
        self.text_encoder_model = text_encoder_model
        self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path)
        self.loaded = True

        # compile
        if self.torch_compile:
            self.music_dcae = torch.compile(self.music_dcae)
            self.ace_step_transformer = torch.compile(self.ace_step_transformer)
            self.text_encoder_model = torch.compile(self.text_encoder_model)

    def get_text_embeddings(self, texts, device, text_max_length=256):
        inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
        inputs = {key: value.to(device) for key, value in inputs.items()}
        if self.text_encoder_model.device != device:
            self.text_encoder_model.to(device)
        with torch.no_grad():
            outputs = self.text_encoder_model(**inputs)
            last_hidden_states = outputs.last_hidden_state
        attention_mask = inputs["attention_mask"]
        return last_hidden_states, attention_mask

    def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
        inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
        inputs = {key: value.to(device) for key, value in inputs.items()}
        if self.text_encoder_model.device != device:
            self.text_encoder_model.to(device)

        def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
            handlers = []

            def hook(module, input, output):
                output[:] *= tau
                return output

            for i in range(l_min, l_max):
                handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
                handlers.append(handler)

            with torch.no_grad():
                outputs = self.text_encoder_model(**inputs)
                last_hidden_states = outputs.last_hidden_state

            for hook in handlers:
                hook.remove()

            return last_hidden_states

        last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
        return last_hidden_states

    def set_seeds(self, batch_size, manual_seeds=None):
        seeds = None
        if manual_seeds is not None:
            if isinstance(manual_seeds, str):
                if "," in manual_seeds:
                    seeds = list(map(int, manual_seeds.split(",")))
                elif manual_seeds.isdigit():
                    seeds = int(manual_seeds)

        random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)]
        actual_seeds = []
        for i in range(batch_size):
            seed = None
            if seeds is None:
                seed = torch.randint(0, 2**32, (1,)).item()
            if isinstance(seeds, int):
                seed = seeds
            if isinstance(seeds, list):
                seed = seeds[i]
            random_generators[i].manual_seed(seed)
            actual_seeds.append(seed)
        return random_generators, actual_seeds

    def get_lang(self, text):
        language = "en"
        try:
            _ = self.lang_segment.getTexts(text)
            langCounts = self.lang_segment.getCounts()
            language = langCounts[0][0]
            if len(langCounts) > 1 and language == "en":
                language = langCounts[1][0]
        except Exception as err:
            language = "en"
        return language

    def tokenize_lyrics(self, lyrics, debug=False):
        lines = lyrics.split("\n")
        lyric_token_idx = [261]
        for line in lines:
            line = line.strip()
            if not line:
                lyric_token_idx += [2]
                continue

            lang = self.get_lang(line)

            if lang not in SUPPORT_LANGUAGES:
                lang = "en"
            if "zh" in lang:
                lang = "zh"
            if "spa" in lang:
                lang = "es"

            try:
                if structure_pattern.match(line):
                    token_idx = self.lyric_tokenizer.encode(line, "en")
                else:
                    token_idx = self.lyric_tokenizer.encode(line, lang)
                if debug:
                    toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx])
                    logger.info(f"debbug {line} --> {lang} --> {toks}")
                lyric_token_idx = lyric_token_idx + token_idx + [2]
            except Exception as e:
                print("tokenize error", e, "for line", line, "major_language", lang)
        return lyric_token_idx

    def calc_v(
        self,
        zt_src,
        zt_tar,
        t,
        encoder_text_hidden_states,
        text_attention_mask,
        target_encoder_text_hidden_states,
        target_text_attention_mask,
        speaker_embds,
        target_speaker_embeds,
        lyric_token_ids,
        lyric_mask,
        target_lyric_token_ids,
        target_lyric_mask,
        do_classifier_free_guidance=False,
        guidance_scale=1.0,
        target_guidance_scale=1.0,
        cfg_type="apg",
        attention_mask=None,
        momentum_buffer=None,
        momentum_buffer_tar=None,
        return_src_pred=True
    ):
        noise_pred_src = None
        if return_src_pred:
            src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
            timestep = t.expand(src_latent_model_input.shape[0])
            # source
            noise_pred_src = self.ace_step_transformer(
                hidden_states=src_latent_model_input,
                attention_mask=attention_mask,
                encoder_text_hidden_states=encoder_text_hidden_states,
                text_attention_mask=text_attention_mask,
                speaker_embeds=speaker_embds,
                lyric_token_idx=lyric_token_ids,
                lyric_mask=lyric_mask,
                timestep=timestep,
            ).sample

            if do_classifier_free_guidance:
                noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2)
                if cfg_type == "apg":
                    noise_pred_src = apg_forward(
                        pred_cond=noise_pred_with_cond_src,
                        pred_uncond=noise_pred_uncond_src,
                        guidance_scale=guidance_scale,
                        momentum_buffer=momentum_buffer,
                    )
                elif cfg_type == "cfg":
                    noise_pred_src = cfg_forward(
                        cond_output=noise_pred_with_cond_src,
                        uncond_output=noise_pred_uncond_src,
                        cfg_strength=guidance_scale,
                    )

        tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
        timestep = t.expand(tar_latent_model_input.shape[0])
        # target
        noise_pred_tar = self.ace_step_transformer(
            hidden_states=tar_latent_model_input,
            attention_mask=attention_mask,
            encoder_text_hidden_states=target_encoder_text_hidden_states,
            text_attention_mask=target_text_attention_mask,
            speaker_embeds=target_speaker_embeds,
            lyric_token_idx=target_lyric_token_ids,
            lyric_mask=target_lyric_mask,
            timestep=timestep,
        ).sample

        if do_classifier_free_guidance:
            noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2)
            if cfg_type == "apg":
                noise_pred_tar = apg_forward(
                    pred_cond=noise_pred_with_cond_tar,
                    pred_uncond=noise_pred_uncond_tar,
                    guidance_scale=target_guidance_scale,
                    momentum_buffer=momentum_buffer_tar,
                )
            elif cfg_type == "cfg":
                noise_pred_tar = cfg_forward(
                    cond_output=noise_pred_with_cond_tar,
                    uncond_output=noise_pred_uncond_tar,
                    cfg_strength=target_guidance_scale,
                )
        return noise_pred_src, noise_pred_tar

    @torch.no_grad()
    def flowedit_diffusion_process(
        self,
        encoder_text_hidden_states,
        text_attention_mask,
        speaker_embds,
        lyric_token_ids,
        lyric_mask,
        target_encoder_text_hidden_states,
        target_text_attention_mask,
        target_speaker_embeds,
        target_lyric_token_ids,
        target_lyric_mask,
        src_latents,
        random_generators=None,
        infer_steps=60,
        guidance_scale=15.0,
        n_min=0,
        n_max=1.0,
        n_avg=1,
    ):

        do_classifier_free_guidance = True
        if guidance_scale == 0.0 or guidance_scale == 1.0:
            do_classifier_free_guidance = False

        target_guidance_scale = guidance_scale
        device = encoder_text_hidden_states.device
        dtype = encoder_text_hidden_states.dtype
        bsz = encoder_text_hidden_states.shape[0]

        scheduler = FlowMatchEulerDiscreteScheduler(
            num_train_timesteps=1000,
            shift=3.0,
        )

        T_steps = infer_steps
        frame_length = src_latents.shape[-1]
        attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
        
        timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)

        if do_classifier_free_guidance:
            attention_mask = torch.cat([attention_mask] * 2, dim=0)
            
            encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0)
            text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)

            target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0)
            target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0)

            speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0)
            target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0)

            lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0)
            lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)

            target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0)
            target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0)

        momentum_buffer = MomentumBuffer()
        momentum_buffer_tar = MomentumBuffer()
        x_src = src_latents
        zt_edit = x_src.clone()
        xt_tar = None
        n_min = int(infer_steps * n_min)
        n_max = int(infer_steps * n_max)

        logger.info("flowedit start from {} to {}".format(n_min, n_max))

        for i, t in tqdm(enumerate(timesteps), total=T_steps):

            if i < n_min:
                continue

            t_i = t/1000

            if i+1 < len(timesteps): 
                t_im1 = (timesteps[i+1])/1000
            else:
                t_im1 = torch.zeros_like(t_i).to(t_i.device)

            if i < n_max:
                # Calculate the average of the V predictions
                V_delta_avg = torch.zeros_like(x_src)
                for k in range(n_avg):
                    fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)

                    zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise

                    zt_tar = zt_edit + zt_src - x_src

                    Vt_src, Vt_tar = self.calc_v(
                        zt_src=zt_src,
                        zt_tar=zt_tar,
                        t=t,
                        encoder_text_hidden_states=encoder_text_hidden_states,
                        text_attention_mask=text_attention_mask,
                        target_encoder_text_hidden_states=target_encoder_text_hidden_states,
                        target_text_attention_mask=target_text_attention_mask,
                        speaker_embds=speaker_embds,
                        target_speaker_embeds=target_speaker_embeds,
                        lyric_token_ids=lyric_token_ids,
                        lyric_mask=lyric_mask,
                        target_lyric_token_ids=target_lyric_token_ids,
                        target_lyric_mask=target_lyric_mask,
                        do_classifier_free_guidance=do_classifier_free_guidance,
                        guidance_scale=guidance_scale,
                        target_guidance_scale=target_guidance_scale,
                        attention_mask=attention_mask,
                        momentum_buffer=momentum_buffer
                    )
                    V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))

                # propagate direct ODE
                zt_edit = zt_edit.to(torch.float32)
                zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
                zt_edit = zt_edit.to(V_delta_avg.dtype)
            else: # i >= T_steps-n_min # regular sampling for last n_min steps
                if i == n_max:
                    fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
                    scheduler._init_step_index(t)
                    sigma = scheduler.sigmas[scheduler.step_index]
                    xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
                    xt_tar = zt_edit + xt_src - x_src
                
                _, Vt_tar = self.calc_v(
                    zt_src=None,
                    zt_tar=xt_tar,
                    t=t,
                    encoder_text_hidden_states=encoder_text_hidden_states,
                    text_attention_mask=text_attention_mask,
                    target_encoder_text_hidden_states=target_encoder_text_hidden_states,
                    target_text_attention_mask=target_text_attention_mask,
                    speaker_embds=speaker_embds,
                    target_speaker_embeds=target_speaker_embeds,
                    lyric_token_ids=lyric_token_ids,
                    lyric_mask=lyric_mask,
                    target_lyric_token_ids=target_lyric_token_ids,
                    target_lyric_mask=target_lyric_mask,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                    guidance_scale=guidance_scale,
                    target_guidance_scale=target_guidance_scale,
                    attention_mask=attention_mask,
                    momentum_buffer_tar=momentum_buffer_tar,
                    return_src_pred=False,
                )
                
                dtype = Vt_tar.dtype
                xt_tar = xt_tar.to(torch.float32)
                prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
                prev_sample = prev_sample.to(dtype) 
                xt_tar = prev_sample
        
        target_latents = zt_edit if xt_tar is None else xt_tar
        return target_latents

    @torch.no_grad()
    def text2music_diffusion_process(
        self,
        duration,
        encoder_text_hidden_states,
        text_attention_mask,
        speaker_embds,
        lyric_token_ids,
        lyric_mask,
        random_generators=None,
        infer_steps=60,
        guidance_scale=15.0,
        omega_scale=10.0,
        scheduler_type="euler",
        cfg_type="apg",
        zero_steps=1,
        use_zero_init=True,
        guidance_interval=0.5,
        guidance_interval_decay=1.0,
        min_guidance_scale=3.0,
        oss_steps=[],
        encoder_text_hidden_states_null=None,
        use_erg_lyric=False,
        use_erg_diffusion=False,
        retake_random_generators=None,
        retake_variance=0.5,
        add_retake_noise=False,
        guidance_scale_text=0.0,
        guidance_scale_lyric=0.0,
        repaint_start=0,
        repaint_end=0,
        src_latents=None,
    ):

        logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
        do_classifier_free_guidance = True
        if guidance_scale == 0.0 or guidance_scale == 1.0:
            do_classifier_free_guidance = False
        
        do_double_condition_guidance = False
        if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
            do_double_condition_guidance = True
            logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric))

        device = encoder_text_hidden_states.device
        dtype = encoder_text_hidden_states.dtype
        bsz = encoder_text_hidden_states.shape[0]

        if scheduler_type == "euler":
            scheduler = FlowMatchEulerDiscreteScheduler(
                num_train_timesteps=1000,
                shift=3.0,
            )
        elif scheduler_type == "heun":
            scheduler = FlowMatchHeunDiscreteScheduler(
                num_train_timesteps=1000,
                shift=3.0,
            )
        
        frame_length = int(duration * 44100 / 512 / 8)
        if src_latents is not None:
            frame_length = src_latents.shape[-1]

        if len(oss_steps) > 0:
            infer_steps = max(oss_steps)
            scheduler.set_timesteps
            timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
            new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
            for idx in range(len(oss_steps)):
                new_timesteps[idx] = timesteps[oss_steps[idx]-1]
            num_inference_steps = len(oss_steps)
            sigmas = (new_timesteps / 1000).float().cpu().numpy()
            timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas)
            logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
        else:
            timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
        
        target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
        
        is_repaint = False
        is_extend  = False
        if add_retake_noise:
            n_min = int(infer_steps * (1 - retake_variance))
            retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
            retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
            repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
            repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
            x0 = src_latents
            # retake
            is_repaint = (repaint_end_frame - repaint_start_frame != frame_length) 
            
            is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
            if is_extend:
                is_repaint = True

            # TODO: train a mask aware repainting controlnet
            # to make sure mean = 0, std = 1
            if not is_repaint:
                target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
            elif not is_extend:
                # if repaint_end_frame 
                repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
                repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
                repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
                repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents)
                zt_edit = x0.clone()
                z0 = repaint_noise
            elif is_extend:
                to_right_pad_gt_latents = None
                to_left_pad_gt_latents = None
                gt_latents = src_latents
                src_latents_length = gt_latents.shape[-1]
                max_infer_fame_length = int(240 * 44100 / 512 / 8)
                left_pad_frame_length = 0
                right_pad_frame_length = 0
                right_trim_length = 0
                left_trim_length = 0
                if repaint_start_frame < 0:
                    left_pad_frame_length = abs(repaint_start_frame)
                    frame_length = left_pad_frame_length + gt_latents.shape[-1]
                    extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0)
                    if frame_length > max_infer_fame_length:
                        right_trim_length = frame_length - max_infer_fame_length
                        extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length]
                        to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:]
                        frame_length = max_infer_fame_length
                    repaint_start_frame = 0
                    gt_latents = extend_gt_latents
                
                if repaint_end_frame > src_latents_length:
                    right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
                    frame_length = gt_latents.shape[-1] + right_pad_frame_length
                    extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0)
                    if frame_length > max_infer_fame_length:
                        left_trim_length = frame_length - max_infer_fame_length
                        extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:]
                        to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length]
                        frame_length = max_infer_fame_length
                    repaint_end_frame = frame_length
                    gt_latents = extend_gt_latents

                repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
                if left_pad_frame_length > 0:
                    repaint_mask[:,:,:,:left_pad_frame_length] = 1.0
                if right_pad_frame_length > 0:
                    repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0
                x0 = gt_latents
                padd_list = []
                if left_pad_frame_length > 0:
                    padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
                padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length])
                if right_pad_frame_length > 0:
                    padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
                target_latents = torch.cat(padd_list, dim=-1)
                assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}"
                zt_edit = x0.clone()
                z0 = target_latents

        attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
        
        # guidance interval
        start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
        end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
        logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}")

        momentum_buffer = MomentumBuffer()

        def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
            handlers = []
            
            def hook(module, input, output):
                output[:] *= tau
                return output
            
            for i in range(l_min, l_max):
                handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
                handlers.append(handler)
        
            encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
            
            for hook in handlers:
                hook.remove()
            
            return encoder_hidden_states

        # P(speaker, text, lyric)
        encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(
            encoder_text_hidden_states,
            text_attention_mask,
            speaker_embds,
            lyric_token_ids,
            lyric_mask,
        )

        if use_erg_lyric:
            # P(null_speaker, text_weaker, lyric_weaker)
            encoder_hidden_states_null = forward_encoder_with_temperature(
                self,
                inputs={
                    "encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states),
                    "text_attention_mask": text_attention_mask,
                    "speaker_embeds": torch.zeros_like(speaker_embds),
                    "lyric_token_idx": lyric_token_ids,
                    "lyric_mask": lyric_mask,
                }
            )
        else:
            # P(null_speaker, null_text, null_lyric)
            encoder_hidden_states_null, _ = self.ace_step_transformer.encode(
                torch.zeros_like(encoder_text_hidden_states),
                text_attention_mask,
                torch.zeros_like(speaker_embds),
                torch.zeros_like(lyric_token_ids),
                lyric_mask,
            )
        
        encoder_hidden_states_no_lyric = None
        if do_double_condition_guidance:
            # P(null_speaker, text, lyric_weaker)
            if use_erg_lyric:
                encoder_hidden_states_no_lyric = forward_encoder_with_temperature(
                    self,
                    inputs={
                        "encoder_text_hidden_states": encoder_text_hidden_states,
                        "text_attention_mask": text_attention_mask,
                        "speaker_embeds": torch.zeros_like(speaker_embds),
                        "lyric_token_idx": lyric_token_ids,
                        "lyric_mask": lyric_mask,
                    }
                )
            # P(null_speaker, text, no_lyric)
            else:
                encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode(
                    encoder_text_hidden_states,
                    text_attention_mask,
                    torch.zeros_like(speaker_embds),
                    torch.zeros_like(lyric_token_ids),
                    lyric_mask,
                )

        def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
            handlers = []
            
            def hook(module, input, output):
                output[:] *= tau
                return output
            
            for i in range(l_min, l_max):
                handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
                handlers.append(handler)
                handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook)
                handlers.append(handler)

            sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
            
            for hook in handlers:
                hook.remove()
            
            return sample
    
        for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
            
            if is_repaint:
                if i < n_min:
                    continue
                elif i == n_min:
                    t_i = t / 1000
                    zt_src = (1 - t_i) * x0 + (t_i) * z0
                    target_latents = zt_edit + zt_src - x0
                    logger.info(f"repaint start from {n_min} add {t_i} level of noise")

            # expand the latents if we are doing classifier free guidance
            latents = target_latents

            is_in_guidance_interval = start_idx <= i < end_idx
            if is_in_guidance_interval and do_classifier_free_guidance:
                # compute current guidance scale
                if guidance_interval_decay > 0:
                    # Linearly interpolate to calculate the current guidance scale
                    progress = (i - start_idx) / (end_idx - start_idx - 1)  # 归一化到[0,1]
                    current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay
                else:
                    current_guidance_scale = guidance_scale

                latent_model_input = latents
                timestep = t.expand(latent_model_input.shape[0])
                output_length = latent_model_input.shape[-1]
                # P(x|speaker, text, lyric)
                noise_pred_with_cond = self.ace_step_transformer.decode(
                    hidden_states=latent_model_input,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_hidden_mask=encoder_hidden_mask,
                    output_length=output_length,
                    timestep=timestep,
                ).sample

                noise_pred_with_only_text_cond = None
                if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None:
                    noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
                        hidden_states=latent_model_input,
                        attention_mask=attention_mask,
                        encoder_hidden_states=encoder_hidden_states_no_lyric,
                        encoder_hidden_mask=encoder_hidden_mask,
                        output_length=output_length,
                        timestep=timestep,
                    ).sample

                if use_erg_diffusion:
                    noise_pred_uncond = forward_diffusion_with_temperature(
                        self,
                        hidden_states=latent_model_input,
                        timestep=timestep,
                        inputs={
                            "encoder_hidden_states": encoder_hidden_states_null,
                            "encoder_hidden_mask": encoder_hidden_mask,
                            "output_length": output_length,
                            "attention_mask": attention_mask,
                        },
                    )
                else:
                    noise_pred_uncond = self.ace_step_transformer.decode(
                        hidden_states=latent_model_input,
                        attention_mask=attention_mask,
                        encoder_hidden_states=encoder_hidden_states_null,
                        encoder_hidden_mask=encoder_hidden_mask,
                        output_length=output_length,
                        timestep=timestep,
                    ).sample

                if do_double_condition_guidance and noise_pred_with_only_text_cond is not None:
                    noise_pred = cfg_double_condition_forward(
                        cond_output=noise_pred_with_cond,
                        uncond_output=noise_pred_uncond,
                        only_text_cond_output=noise_pred_with_only_text_cond,
                        guidance_scale_text=guidance_scale_text,
                        guidance_scale_lyric=guidance_scale_lyric,
                    )

                elif cfg_type == "apg":
                    noise_pred = apg_forward(
                        pred_cond=noise_pred_with_cond,
                        pred_uncond=noise_pred_uncond,
                        guidance_scale=current_guidance_scale,
                        momentum_buffer=momentum_buffer,
                    )
                elif cfg_type == "cfg":
                    noise_pred = cfg_forward(
                        cond_output=noise_pred_with_cond,
                        uncond_output=noise_pred_uncond,
                        cfg_strength=current_guidance_scale,
                    )
                elif cfg_type == "cfg_star":
                    noise_pred = cfg_zero_star(
                        noise_pred_with_cond=noise_pred_with_cond,
                        noise_pred_uncond=noise_pred_uncond,
                        guidance_scale=current_guidance_scale,
                        i=i,
                        zero_steps=zero_steps,
                        use_zero_init=use_zero_init
                    )
            else:
                latent_model_input = latents
                timestep = t.expand(latent_model_input.shape[0])
                noise_pred = self.ace_step_transformer.decode(
                    hidden_states=latent_model_input,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_hidden_mask=encoder_hidden_mask,
                    output_length=latent_model_input.shape[-1],
                    timestep=timestep,
                ).sample

            if is_repaint and i >= n_min:
                t_i = t/1000
                if i+1 < len(timesteps): 
                    t_im1 = (timesteps[i+1])/1000
                else:
                    t_im1 = torch.zeros_like(t_i).to(t_i.device)
                dtype = noise_pred.dtype
                target_latents = target_latents.to(torch.float32)
                prev_sample = target_latents + (t_im1 - t_i) * noise_pred
                prev_sample = prev_sample.to(dtype)
                target_latents = prev_sample
                zt_src = (1 - t_im1) * x0 + (t_im1) * z0
                target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src)
            else:
                target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]

        if is_extend:
            if to_right_pad_gt_latents is not None:
                target_latents = torch.cate([target_latents, to_right_pad_gt_latents], dim=-1)
            if to_left_pad_gt_latents is not None:
                target_latents = torch.cate([to_right_pad_gt_latents, target_latents], dim=0)
        return target_latents

    def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="mp3"):
        output_audio_paths = []
        bs = latents.shape[0]
        audio_lengths = [target_wav_duration_second * sample_rate] * bs
        pred_latents = latents
        with torch.no_grad():
            _, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
        pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
        for i in tqdm(range(bs)):
            output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate)
            output_audio_paths.append(output_audio_path)
        return output_audio_paths

    def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"):
        if save_path is None:
            logger.warning("save_path is None, using default path ./outputs/")
            base_path = f"./outputs"
            ensure_directory_exists(base_path)
        else:
            base_path = save_path
            ensure_directory_exists(base_path)

        output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}"
        target_wav = target_wav.float()
        torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format, compression=torio.io.CodecConfig(bit_rate=320000))
        return output_path_flac

    def infer_latents(self, input_audio_path):
        if input_audio_path is None:
            return None
        input_audio, sr = self.music_dcae.load_audio(input_audio_path)
        input_audio = input_audio.unsqueeze(0)
        device, dtype = self.device, self.dtype
        input_audio = input_audio.to(device=device, dtype=dtype)
        latents, _ = self.music_dcae.encode(input_audio, sr=sr)
        return latents

    def __call__(
        self,
        audio_duration: float = 60.0,
        prompt: str = None,
        lyrics: str = None,
        infer_step: int = 60,
        guidance_scale: float = 15.0,
        scheduler_type: str = "euler",
        cfg_type: str = "apg",
        omega_scale: int = 10.0,
        manual_seeds: list = None,
        guidance_interval: float = 0.5,
        guidance_interval_decay: float = 0.,
        min_guidance_scale: float = 3.0,
        use_erg_tag: bool = True,
        use_erg_lyric: bool = True,
        use_erg_diffusion: bool = True,
        oss_steps: str = None,
        guidance_scale_text: float = 0.0,
        guidance_scale_lyric: float = 0.0,
        retake_seeds: list = None,
        retake_variance: float = 0.5,
        task: str = "text2music",
        repaint_start: int = 0,
        repaint_end: int = 0,
        src_audio_path: str = None,
        edit_target_prompt: str = None,
        edit_target_lyrics: str = None,
        edit_n_min: float = 0.0,
        edit_n_max: float = 1.0,
        edit_n_avg: int = 1,
        save_path: str = None,
        format: str = "mp3",
        batch_size: int = 1,
        debug: bool = False,
    ):

        start_time = time.time()

        if not self.loaded:
            logger.warning("Checkpoint not loaded, loading checkpoint...")
            self.load_checkpoint(self.checkpoint_dir)
            load_model_cost = time.time() - start_time
            logger.info(f"Model loaded in {load_model_cost:.2f} seconds.")

        start_time = time.time()

        random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
        retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds)

        if isinstance(oss_steps, str) and len(oss_steps) > 0:
            oss_steps = list(map(int, oss_steps.split(",")))
        else:
            oss_steps = []
        
        texts = [prompt]
        encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
        encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
        text_attention_mask = text_attention_mask.repeat(batch_size, 1)

        encoder_text_hidden_states_null = None
        if use_erg_tag:
            encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device)
            encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1)

        # not support for released checkpoint
        speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)

        # 6 lyric
        lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
        lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
        if len(lyrics) > 0:
            lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
            lyric_mask = [1] * len(lyric_token_idx)
            lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
            lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)

        if audio_duration <= 0:
            audio_duration = random.uniform(30.0, 240.0)
            logger.info(f"random audio duration: {audio_duration}")

        end_time = time.time()
        preprocess_time_cost = end_time - start_time
        start_time = end_time

        add_retake_noise = task in ("retake", "repaint", "extend")
        # retake equal to repaint
        if task == "retake":
            repaint_start = 0
            repaint_end = audio_duration
        
        src_latents = None
        if src_audio_path is not None:
            assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task"
            assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist"
            src_latents = self.infer_latents(src_audio_path)

        if task == "edit":
            texts = [edit_target_prompt]
            target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device)
            target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
            target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1)

            target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
            target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
            if len(edit_target_lyrics) > 0:
                target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True)
                target_lyric_mask = [1] * len(target_lyric_token_idx)
                target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
                target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)

            target_speaker_embeds = speaker_embeds.clone()

            target_latents = self.flowedit_diffusion_process(
                encoder_text_hidden_states=encoder_text_hidden_states,
                text_attention_mask=text_attention_mask,
                speaker_embds=speaker_embeds,
                lyric_token_ids=lyric_token_idx,
                lyric_mask=lyric_mask,
                target_encoder_text_hidden_states=target_encoder_text_hidden_states,
                target_text_attention_mask=target_text_attention_mask,
                target_speaker_embeds=target_speaker_embeds,
                target_lyric_token_ids=target_lyric_token_idx,
                target_lyric_mask=target_lyric_mask,
                src_latents=src_latents,
                random_generators=retake_random_generators, # more diversity
                infer_steps=infer_step,
                guidance_scale=guidance_scale,
                n_min=edit_n_min,
                n_max=edit_n_max,
                n_avg=edit_n_avg,
            )
        else:
            target_latents = self.text2music_diffusion_process(
                duration=audio_duration,
                encoder_text_hidden_states=encoder_text_hidden_states,
                text_attention_mask=text_attention_mask,
                speaker_embds=speaker_embeds,
                lyric_token_ids=lyric_token_idx,
                lyric_mask=lyric_mask,
                guidance_scale=guidance_scale,
                omega_scale=omega_scale,
                infer_steps=infer_step,
                random_generators=random_generators,
                scheduler_type=scheduler_type,
                cfg_type=cfg_type,
                guidance_interval=guidance_interval,
                guidance_interval_decay=guidance_interval_decay,
                min_guidance_scale=min_guidance_scale,
                oss_steps=oss_steps,
                encoder_text_hidden_states_null=encoder_text_hidden_states_null,
                use_erg_lyric=use_erg_lyric,
                use_erg_diffusion=use_erg_diffusion,
                retake_random_generators=retake_random_generators,
                retake_variance=retake_variance,
                add_retake_noise=add_retake_noise,
                guidance_scale_text=guidance_scale_text,
                guidance_scale_lyric=guidance_scale_lyric,
                repaint_start=repaint_start,
                repaint_end=repaint_end,
                src_latents=src_latents,
            )

        end_time = time.time()
        diffusion_time_cost = end_time - start_time
        start_time = end_time

        output_paths = self.latents2audio(
            latents=target_latents,
            target_wav_duration_second=audio_duration,
            save_path=save_path,
            format=format,
        )

        end_time = time.time()
        latent2audio_time_cost = end_time - start_time
        timecosts = {
            "preprocess": preprocess_time_cost,
            "diffusion": diffusion_time_cost,
            "latent2audio": latent2audio_time_cost,
        }

        input_params_json = {
            "task": task,
            "prompt": prompt if task != "edit" else edit_target_prompt,
            "lyrics": lyrics if task != "edit" else edit_target_lyrics,
            "audio_duration": audio_duration,
            "infer_step": infer_step,
            "guidance_scale": guidance_scale,
            "scheduler_type": scheduler_type,
            "cfg_type": cfg_type,
            "omega_scale": omega_scale,
            "guidance_interval": guidance_interval,
            "guidance_interval_decay": guidance_interval_decay,
            "min_guidance_scale": min_guidance_scale,
            "use_erg_tag": use_erg_tag,
            "use_erg_lyric": use_erg_lyric,
            "use_erg_diffusion": use_erg_diffusion,
            "oss_steps": oss_steps,
            "timecosts": timecosts,
            "actual_seeds": actual_seeds,
            "retake_seeds": actual_retake_seeds,
            "retake_variance": retake_variance,
            "guidance_scale_text": guidance_scale_text,
            "guidance_scale_lyric": guidance_scale_lyric,
            "repaint_start": repaint_start,
            "repaint_end": repaint_end,
            "edit_n_min": edit_n_min,
            "edit_n_max": edit_n_max,
            "edit_n_avg": edit_n_avg,        
            "src_audio_path": src_audio_path,
            "edit_target_prompt": edit_target_prompt,
            "edit_target_lyrics": edit_target_lyrics,
        }
        # save input_params_json
        for output_audio_path in output_paths:
            input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json")
            input_params_json["audio_path"] = output_audio_path
            with open(input_params_json_save_path, "w", encoding="utf-8") as f:
                json.dump(input_params_json, f, indent=4, ensure_ascii=False)

        return output_paths + [input_params_json]