Spaces:
Running
Running
File size: 55,052 Bytes
5488167 48bb372 5488167 71922e7 5488167 1005670 48bb372 917a84f 48bb372 917a84f 71922e7 5488167 48bb372 5488167 48bb372 71922e7 5488167 71922e7 5488167 71922e7 5488167 48bb372 5488167 d39a7e5 5488167 d39a7e5 5488167 3b7cae0 5488167 3b7cae0 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 566c01f 5488167 566c01f 5488167 48bb372 566c01f 48bb372 566c01f 5488167 48bb372 566c01f 48bb372 71922e7 48bb372 566c01f 71922e7 d39a7e5 5488167 48bb372 d39a7e5 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 48bb372 5488167 71922e7 5488167 566c01f 5488167 566c01f d39a7e5 566c01f 5488167 1005670 5488167 1005670 5488167 48bb372 5488167 1005670 5488167 48bb372 5488167 48bb372 5488167 1005670 5488167 566c01f 5488167 48bb372 5488167 566c01f 5488167 566c01f 48bb372 566c01f 48bb372 566c01f 48bb372 5488167 566c01f 5488167 48bb372 5488167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
import random
import time
import os
import re
import torch
import torch.nn as nn
from loguru import logger
from tqdm import tqdm
import json
import math
from huggingface_hub import hf_hub_download
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps
from diffusers.utils.torch_utils import randn_tensor
from transformers import UMT5EncoderModel, AutoTokenizer
from language_segmentation import LangSegment
from music_dcae.music_dcae_pipeline import MusicDCAE
from models.ace_step_transformer import ACEStepTransformer2DModel
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
import torchaudio
import torio
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision('high')
torch.backends.cudnn.deterministic = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
def ensure_directory_exists(directory):
directory = str(directory)
if not os.path.exists(directory):
os.makedirs(directory)
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
# class ACEStepPipeline(DiffusionPipeline):
class ACEStepPipeline:
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs):
if not checkpoint_dir:
if persistent_storage_path is None:
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
else:
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
ensure_directory_exists(checkpoint_dir)
self.checkpoint_dir = checkpoint_dir
device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cpu" and torch.backends.mps.is_available():
device = torch.device("mps")
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
if device.type == "mps" and self.dtype == torch.bfloat16:
self.dtype = torch.float16
self.device = device
self.loaded = False
self.torch_compile = torch_compile
def load_checkpoint(self, checkpoint_dir=None):
device = self.device
dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8")
vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder")
ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer")
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")
files_exist = (
os.path.exists(os.path.join(dcae_model_path, "config.json")) and
os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(vocoder_model_path, "config.json")) and
os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(ace_step_model_path, "config.json")) and
os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json"))
)
if not files_exist:
logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub")
# download music dcae model
os.makedirs(dcae_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download vocoder model
os.makedirs(vocoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download ace_step transformer model
os.makedirs(ace_step_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download text encoder model
os.makedirs(text_encoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
logger.info("Models downloaded")
dcae_checkpoint_path = dcae_model_path
vocoder_checkpoint_path = vocoder_model_path
ace_step_checkpoint_path = ace_step_model_path
text_encoder_checkpoint_path = text_encoder_model_path
self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path)
self.music_dcae.to(device).eval().to(self.dtype)
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype)
self.ace_step_transformer.to(device).eval().to(self.dtype)
lang_segment = LangSegment()
lang_segment.setfilters([
'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el',
'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy',
'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg',
'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu',
'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk',
'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu'
])
self.lang_segment = lang_segment
self.lyric_tokenizer = VoiceBpeTokenizer()
text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval()
text_encoder_model = text_encoder_model.to(device).to(self.dtype)
text_encoder_model.requires_grad_(False)
self.text_encoder_model = text_encoder_model
self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path)
self.loaded = True
# compile
if self.torch_compile:
self.music_dcae = torch.compile(self.music_dcae)
self.ace_step_transformer = torch.compile(self.ace_step_transformer)
self.text_encoder_model = torch.compile(self.text_encoder_model)
def get_text_embeddings(self, texts, device, text_max_length=256):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
attention_mask = inputs["attention_mask"]
return last_hidden_states, attention_mask
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
handlers.append(handler)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
for hook in handlers:
hook.remove()
return last_hidden_states
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
return last_hidden_states
def set_seeds(self, batch_size, manual_seeds=None):
seeds = None
if manual_seeds is not None:
if isinstance(manual_seeds, str):
if "," in manual_seeds:
seeds = list(map(int, manual_seeds.split(",")))
elif manual_seeds.isdigit():
seeds = int(manual_seeds)
random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)]
actual_seeds = []
for i in range(batch_size):
seed = None
if seeds is None:
seed = torch.randint(0, 2**32, (1,)).item()
if isinstance(seeds, int):
seed = seeds
if isinstance(seeds, list):
seed = seeds[i]
random_generators[i].manual_seed(seed)
actual_seeds.append(seed)
return random_generators, actual_seeds
def get_lang(self, text):
language = "en"
try:
_ = self.lang_segment.getTexts(text)
langCounts = self.lang_segment.getCounts()
language = langCounts[0][0]
if len(langCounts) > 1 and language == "en":
language = langCounts[1][0]
except Exception as err:
language = "en"
return language
def tokenize_lyrics(self, lyrics, debug=False):
lines = lyrics.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
if structure_pattern.match(line):
token_idx = self.lyric_tokenizer.encode(line, "en")
else:
token_idx = self.lyric_tokenizer.encode(line, lang)
if debug:
toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx])
logger.info(f"debbug {line} --> {lang} --> {toks}")
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
print("tokenize error", e, "for line", line, "major_language", lang)
return lyric_token_idx
def calc_v(
self,
zt_src,
zt_tar,
t,
encoder_text_hidden_states,
text_attention_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
speaker_embds,
target_speaker_embeds,
lyric_token_ids,
lyric_mask,
target_lyric_token_ids,
target_lyric_mask,
do_classifier_free_guidance=False,
guidance_scale=1.0,
target_guidance_scale=1.0,
cfg_type="apg",
attention_mask=None,
momentum_buffer=None,
momentum_buffer_tar=None,
return_src_pred=True
):
noise_pred_src = None
if return_src_pred:
src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
timestep = t.expand(src_latent_model_input.shape[0])
# source
noise_pred_src = self.ace_step_transformer(
hidden_states=src_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embds,
lyric_token_idx=lyric_token_ids,
lyric_mask=lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2)
if cfg_type == "apg":
noise_pred_src = apg_forward(
pred_cond=noise_pred_with_cond_src,
pred_uncond=noise_pred_uncond_src,
guidance_scale=guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred_src = cfg_forward(
cond_output=noise_pred_with_cond_src,
uncond_output=noise_pred_uncond_src,
cfg_strength=guidance_scale,
)
tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
timestep = t.expand(tar_latent_model_input.shape[0])
# target
noise_pred_tar = self.ace_step_transformer(
hidden_states=tar_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=target_encoder_text_hidden_states,
text_attention_mask=target_text_attention_mask,
speaker_embeds=target_speaker_embeds,
lyric_token_idx=target_lyric_token_ids,
lyric_mask=target_lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2)
if cfg_type == "apg":
noise_pred_tar = apg_forward(
pred_cond=noise_pred_with_cond_tar,
pred_uncond=noise_pred_uncond_tar,
guidance_scale=target_guidance_scale,
momentum_buffer=momentum_buffer_tar,
)
elif cfg_type == "cfg":
noise_pred_tar = cfg_forward(
cond_output=noise_pred_with_cond_tar,
uncond_output=noise_pred_uncond_tar,
cfg_strength=target_guidance_scale,
)
return noise_pred_src, noise_pred_tar
@torch.no_grad()
def flowedit_diffusion_process(
self,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
target_speaker_embeds,
target_lyric_token_ids,
target_lyric_mask,
src_latents,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
n_min=0,
n_max=1.0,
n_avg=1,
):
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
target_guidance_scale = guidance_scale
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
T_steps = infer_steps
frame_length = src_latents.shape[-1]
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
if do_classifier_free_guidance:
attention_mask = torch.cat([attention_mask] * 2, dim=0)
encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0)
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0)
target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0)
speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0)
target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0)
lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0)
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0)
target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0)
momentum_buffer = MomentumBuffer()
momentum_buffer_tar = MomentumBuffer()
x_src = src_latents
zt_edit = x_src.clone()
xt_tar = None
n_min = int(infer_steps * n_min)
n_max = int(infer_steps * n_max)
logger.info("flowedit start from {} to {}".format(n_min, n_max))
for i, t in tqdm(enumerate(timesteps), total=T_steps):
if i < n_min:
continue
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
if i < n_max:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src)
for k in range(n_avg):
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
zt_tar = zt_edit + zt_src - x_src
Vt_src, Vt_tar = self.calc_v(
zt_src=zt_src,
zt_tar=zt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer=momentum_buffer
)
V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling for last n_min steps
if i == n_max:
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
scheduler._init_step_index(t)
sigma = scheduler.sigmas[scheduler.step_index]
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
xt_tar = zt_edit + xt_src - x_src
_, Vt_tar = self.calc_v(
zt_src=None,
zt_tar=xt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer_tar=momentum_buffer_tar,
return_src_pred=False,
)
dtype = Vt_tar.dtype
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
prev_sample = prev_sample.to(dtype)
xt_tar = prev_sample
target_latents = zt_edit if xt_tar is None else xt_tar
return target_latents
@torch.no_grad()
def text2music_diffusion_process(
self,
duration,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
omega_scale=10.0,
scheduler_type="euler",
cfg_type="apg",
zero_steps=1,
use_zero_init=True,
guidance_interval=0.5,
guidance_interval_decay=1.0,
min_guidance_scale=3.0,
oss_steps=[],
encoder_text_hidden_states_null=None,
use_erg_lyric=False,
use_erg_diffusion=False,
retake_random_generators=None,
retake_variance=0.5,
add_retake_noise=False,
guidance_scale_text=0.0,
guidance_scale_lyric=0.0,
repaint_start=0,
repaint_end=0,
src_latents=None,
):
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
do_double_condition_guidance = False
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
do_double_condition_guidance = True
logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric))
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
if scheduler_type == "euler":
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
elif scheduler_type == "heun":
scheduler = FlowMatchHeunDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
frame_length = int(duration * 44100 / 512 / 8)
if src_latents is not None:
frame_length = src_latents.shape[-1]
if len(oss_steps) > 0:
infer_steps = max(oss_steps)
scheduler.set_timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
for idx in range(len(oss_steps)):
new_timesteps[idx] = timesteps[oss_steps[idx]-1]
num_inference_steps = len(oss_steps)
sigmas = (new_timesteps / 1000).float().cpu().numpy()
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas)
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
else:
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
is_repaint = False
is_extend = False
if add_retake_noise:
n_min = int(infer_steps * (1 - retake_variance))
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
x0 = src_latents
# retake
is_repaint = (repaint_end_frame - repaint_start_frame != frame_length)
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
if is_extend:
is_repaint = True
# TODO: train a mask aware repainting controlnet
# to make sure mean = 0, std = 1
if not is_repaint:
target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
elif not is_extend:
# if repaint_end_frame
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents)
zt_edit = x0.clone()
z0 = repaint_noise
elif is_extend:
to_right_pad_gt_latents = None
to_left_pad_gt_latents = None
gt_latents = src_latents
src_latents_length = gt_latents.shape[-1]
max_infer_fame_length = int(240 * 44100 / 512 / 8)
left_pad_frame_length = 0
right_pad_frame_length = 0
right_trim_length = 0
left_trim_length = 0
if repaint_start_frame < 0:
left_pad_frame_length = abs(repaint_start_frame)
frame_length = left_pad_frame_length + gt_latents.shape[-1]
extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0)
if frame_length > max_infer_fame_length:
right_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length]
to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:]
frame_length = max_infer_fame_length
repaint_start_frame = 0
gt_latents = extend_gt_latents
if repaint_end_frame > src_latents_length:
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
frame_length = gt_latents.shape[-1] + right_pad_frame_length
extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0)
if frame_length > max_infer_fame_length:
left_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:]
to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length]
frame_length = max_infer_fame_length
repaint_end_frame = frame_length
gt_latents = extend_gt_latents
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
if left_pad_frame_length > 0:
repaint_mask[:,:,:,:left_pad_frame_length] = 1.0
if right_pad_frame_length > 0:
repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0
x0 = gt_latents
padd_list = []
if left_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length])
if right_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
target_latents = torch.cat(padd_list, dim=-1)
assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}"
zt_edit = x0.clone()
z0 = target_latents
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
# guidance interval
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}")
momentum_buffer = MomentumBuffer()
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
handlers.append(handler)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
for hook in handlers:
hook.remove()
return encoder_hidden_states
# P(speaker, text, lyric)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
)
if use_erg_lyric:
# P(null_speaker, text_weaker, lyric_weaker)
encoder_hidden_states_null = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states),
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
else:
# P(null_speaker, null_text, null_lyric)
encoder_hidden_states_null, _ = self.ace_step_transformer.encode(
torch.zeros_like(encoder_text_hidden_states),
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
encoder_hidden_states_no_lyric = None
if do_double_condition_guidance:
# P(null_speaker, text, lyric_weaker)
if use_erg_lyric:
encoder_hidden_states_no_lyric = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states,
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
# P(null_speaker, text, no_lyric)
else:
encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
handlers.append(handler)
handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook)
handlers.append(handler)
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
for hook in handlers:
hook.remove()
return sample
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
if is_repaint:
if i < n_min:
continue
elif i == n_min:
t_i = t / 1000
zt_src = (1 - t_i) * x0 + (t_i) * z0
target_latents = zt_edit + zt_src - x0
logger.info(f"repaint start from {n_min} add {t_i} level of noise")
# expand the latents if we are doing classifier free guidance
latents = target_latents
is_in_guidance_interval = start_idx <= i < end_idx
if is_in_guidance_interval and do_classifier_free_guidance:
# compute current guidance scale
if guidance_interval_decay > 0:
# Linearly interpolate to calculate the current guidance scale
progress = (i - start_idx) / (end_idx - start_idx - 1) # 归一化到[0,1]
current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay
else:
current_guidance_scale = guidance_scale
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
output_length = latent_model_input.shape[-1]
# P(x|speaker, text, lyric)
noise_pred_with_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
noise_pred_with_only_text_cond = None
if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None:
noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_no_lyric,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if use_erg_diffusion:
noise_pred_uncond = forward_diffusion_with_temperature(
self,
hidden_states=latent_model_input,
timestep=timestep,
inputs={
"encoder_hidden_states": encoder_hidden_states_null,
"encoder_hidden_mask": encoder_hidden_mask,
"output_length": output_length,
"attention_mask": attention_mask,
},
)
else:
noise_pred_uncond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_null,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if do_double_condition_guidance and noise_pred_with_only_text_cond is not None:
noise_pred = cfg_double_condition_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
only_text_cond_output=noise_pred_with_only_text_cond,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
)
elif cfg_type == "apg":
noise_pred = apg_forward(
pred_cond=noise_pred_with_cond,
pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred = cfg_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
cfg_strength=current_guidance_scale,
)
elif cfg_type == "cfg_star":
noise_pred = cfg_zero_star(
noise_pred_with_cond=noise_pred_with_cond,
noise_pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
i=i,
zero_steps=zero_steps,
use_zero_init=use_zero_init
)
else:
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
noise_pred = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=latent_model_input.shape[-1],
timestep=timestep,
).sample
if is_repaint and i >= n_min:
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
dtype = noise_pred.dtype
target_latents = target_latents.to(torch.float32)
prev_sample = target_latents + (t_im1 - t_i) * noise_pred
prev_sample = prev_sample.to(dtype)
target_latents = prev_sample
zt_src = (1 - t_im1) * x0 + (t_im1) * z0
target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src)
else:
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]
if is_extend:
if to_right_pad_gt_latents is not None:
target_latents = torch.cate([target_latents, to_right_pad_gt_latents], dim=-1)
if to_left_pad_gt_latents is not None:
target_latents = torch.cate([to_right_pad_gt_latents, target_latents], dim=0)
return target_latents
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="mp3"):
output_audio_paths = []
bs = latents.shape[0]
audio_lengths = [target_wav_duration_second * sample_rate] * bs
pred_latents = latents
with torch.no_grad():
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
for i in tqdm(range(bs)):
output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate)
output_audio_paths.append(output_audio_path)
return output_audio_paths
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"):
if save_path is None:
logger.warning("save_path is None, using default path ./outputs/")
base_path = f"./outputs"
ensure_directory_exists(base_path)
else:
base_path = save_path
ensure_directory_exists(base_path)
output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}"
target_wav = target_wav.float()
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format, compression=torio.io.CodecConfig(bit_rate=320000))
return output_path_flac
def infer_latents(self, input_audio_path):
if input_audio_path is None:
return None
input_audio, sr = self.music_dcae.load_audio(input_audio_path)
input_audio = input_audio.unsqueeze(0)
device, dtype = self.device, self.dtype
input_audio = input_audio.to(device=device, dtype=dtype)
latents, _ = self.music_dcae.encode(input_audio, sr=sr)
return latents
def __call__(
self,
audio_duration: float = 60.0,
prompt: str = None,
lyrics: str = None,
infer_step: int = 60,
guidance_scale: float = 15.0,
scheduler_type: str = "euler",
cfg_type: str = "apg",
omega_scale: int = 10.0,
manual_seeds: list = None,
guidance_interval: float = 0.5,
guidance_interval_decay: float = 0.,
min_guidance_scale: float = 3.0,
use_erg_tag: bool = True,
use_erg_lyric: bool = True,
use_erg_diffusion: bool = True,
oss_steps: str = None,
guidance_scale_text: float = 0.0,
guidance_scale_lyric: float = 0.0,
retake_seeds: list = None,
retake_variance: float = 0.5,
task: str = "text2music",
repaint_start: int = 0,
repaint_end: int = 0,
src_audio_path: str = None,
edit_target_prompt: str = None,
edit_target_lyrics: str = None,
edit_n_min: float = 0.0,
edit_n_max: float = 1.0,
edit_n_avg: int = 1,
save_path: str = None,
format: str = "mp3",
batch_size: int = 1,
debug: bool = False,
):
start_time = time.time()
if not self.loaded:
logger.warning("Checkpoint not loaded, loading checkpoint...")
self.load_checkpoint(self.checkpoint_dir)
load_model_cost = time.time() - start_time
logger.info(f"Model loaded in {load_model_cost:.2f} seconds.")
start_time = time.time()
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds)
if isinstance(oss_steps, str) and len(oss_steps) > 0:
oss_steps = list(map(int, oss_steps.split(",")))
else:
oss_steps = []
texts = [prompt]
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
text_attention_mask = text_attention_mask.repeat(batch_size, 1)
encoder_text_hidden_states_null = None
if use_erg_tag:
encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device)
encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1)
# not support for released checkpoint
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)
# 6 lyric
lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(lyrics) > 0:
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
lyric_mask = [1] * len(lyric_token_idx)
lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
if audio_duration <= 0:
audio_duration = random.uniform(30.0, 240.0)
logger.info(f"random audio duration: {audio_duration}")
end_time = time.time()
preprocess_time_cost = end_time - start_time
start_time = end_time
add_retake_noise = task in ("retake", "repaint", "extend")
# retake equal to repaint
if task == "retake":
repaint_start = 0
repaint_end = audio_duration
src_latents = None
if src_audio_path is not None:
assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task"
assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist"
src_latents = self.infer_latents(src_audio_path)
if task == "edit":
texts = [edit_target_prompt]
target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device)
target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1)
target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(edit_target_lyrics) > 0:
target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True)
target_lyric_mask = [1] * len(target_lyric_token_idx)
target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_speaker_embeds = speaker_embeds.clone()
target_latents = self.flowedit_diffusion_process(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
target_speaker_embeds=target_speaker_embeds,
target_lyric_token_ids=target_lyric_token_idx,
target_lyric_mask=target_lyric_mask,
src_latents=src_latents,
random_generators=retake_random_generators, # more diversity
infer_steps=infer_step,
guidance_scale=guidance_scale,
n_min=edit_n_min,
n_max=edit_n_max,
n_avg=edit_n_avg,
)
else:
target_latents = self.text2music_diffusion_process(
duration=audio_duration,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
guidance_scale=guidance_scale,
omega_scale=omega_scale,
infer_steps=infer_step,
random_generators=random_generators,
scheduler_type=scheduler_type,
cfg_type=cfg_type,
guidance_interval=guidance_interval,
guidance_interval_decay=guidance_interval_decay,
min_guidance_scale=min_guidance_scale,
oss_steps=oss_steps,
encoder_text_hidden_states_null=encoder_text_hidden_states_null,
use_erg_lyric=use_erg_lyric,
use_erg_diffusion=use_erg_diffusion,
retake_random_generators=retake_random_generators,
retake_variance=retake_variance,
add_retake_noise=add_retake_noise,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
repaint_start=repaint_start,
repaint_end=repaint_end,
src_latents=src_latents,
)
end_time = time.time()
diffusion_time_cost = end_time - start_time
start_time = end_time
output_paths = self.latents2audio(
latents=target_latents,
target_wav_duration_second=audio_duration,
save_path=save_path,
format=format,
)
end_time = time.time()
latent2audio_time_cost = end_time - start_time
timecosts = {
"preprocess": preprocess_time_cost,
"diffusion": diffusion_time_cost,
"latent2audio": latent2audio_time_cost,
}
input_params_json = {
"task": task,
"prompt": prompt if task != "edit" else edit_target_prompt,
"lyrics": lyrics if task != "edit" else edit_target_lyrics,
"audio_duration": audio_duration,
"infer_step": infer_step,
"guidance_scale": guidance_scale,
"scheduler_type": scheduler_type,
"cfg_type": cfg_type,
"omega_scale": omega_scale,
"guidance_interval": guidance_interval,
"guidance_interval_decay": guidance_interval_decay,
"min_guidance_scale": min_guidance_scale,
"use_erg_tag": use_erg_tag,
"use_erg_lyric": use_erg_lyric,
"use_erg_diffusion": use_erg_diffusion,
"oss_steps": oss_steps,
"timecosts": timecosts,
"actual_seeds": actual_seeds,
"retake_seeds": actual_retake_seeds,
"retake_variance": retake_variance,
"guidance_scale_text": guidance_scale_text,
"guidance_scale_lyric": guidance_scale_lyric,
"repaint_start": repaint_start,
"repaint_end": repaint_end,
"edit_n_min": edit_n_min,
"edit_n_max": edit_n_max,
"edit_n_avg": edit_n_avg,
"src_audio_path": src_audio_path,
"edit_target_prompt": edit_target_prompt,
"edit_target_lyrics": edit_target_lyrics,
}
# save input_params_json
for output_audio_path in output_paths:
input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json")
input_params_json["audio_path"] = output_audio_path
with open(input_params_json_save_path, "w", encoding="utf-8") as f:
json.dump(input_params_json, f, indent=4, ensure_ascii=False)
return output_paths + [input_params_json]
|