File size: 45,686 Bytes
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
"""
This file bundles language identification functions.

Modifications (fork): Copyright (c) 2021, Adrien Barbaresi.

Original code: Copyright (c) 2011 Marco Lui <saffsd@gmail.com>.
Based on research by Marco Lui and Tim Baldwin.

See LICENSE file for more info.
https://github.com/adbar/py3langid

Projects:
https://github.com/juntaosun/LangSegment
"""

import os
import re
import sys
import numpy as np
from collections import Counter
from collections import defaultdict

# import langid
# import py3langid as langid
# pip install py3langid==0.2.2

# 启用语言预测概率归一化,概率预测的分数。因此,实现重新规范化 产生 0-1 范围内的输出。
# langid disables probability normalization by default. For command-line usages of , it can be enabled by passing the flag. 
# For probability normalization in library use, the user must instantiate their own . An example of such usage is as follows:
from py3langid.langid import LanguageIdentifier, MODEL_FILE

# Digital processing
try:from .utils.num import num2str
except ImportError:
    try:from utils.num import num2str
    except ImportError as e:
        raise e

# -----------------------------------
# 更新日志:新版本分词更加精准。
# Changelog: The new version of the word segmentation is more accurate.
# チェンジログ:新しいバージョンの単語セグメンテーションはより正確です。
# Changelog: 분할이라는 단어의 새로운 버전이 더 정확합니다.
# -----------------------------------


# Word segmentation function: 
# automatically identify and split the words (Chinese/English/Japanese/Korean) in the article or sentence according to different languages, 
# making it more suitable for TTS processing.
# This code is designed for front-end text multi-lingual mixed annotation distinction, multi-language mixed training and inference of various TTS projects.
# This processing result is mainly for (Chinese = zh, Japanese = ja, English = en, Korean = ko), and can actually support up to 97 different language mixing processing.

#===========================================================================================================
#分かち書き機能:文章や文章の中の例えば(中国語/英語/日本語/韓国語)を、異なる言語で自動的に認識して分割し、TTS処理により適したものにします。
#このコードは、さまざまなTTSプロジェクトのフロントエンドテキストの多言語混合注釈区別、多言語混合トレーニング、および推論のために特別に作成されています。
#===========================================================================================================
#(1)自動分詞:「韓国語では何を読むのですかあなたの体育の先生は誰ですか?今回の発表会では、iPhone 15シリーズの4機種が登場しました」
#(2)手动分词:“あなたの名前は<ja>佐々木ですか?<ja>ですか?”
#この処理結果は主に(中国語=ja、日本語=ja、英語=en、韓国語=ko)を対象としており、実際には最大97の異なる言語の混合処理をサポートできます。
#===========================================================================================================

#===========================================================================================================
# 단어 분할 기능: 기사 또는 문장에서 단어(중국어/영어/일본어/한국어)를 다른 언어에 따라 자동으로 식별하고 분할하여 TTS 처리에 더 적합합니다.
# 이 코드는 프런트 엔드 텍스트 다국어 혼합 주석 분화, 다국어 혼합 교육 및 다양한 TTS 프로젝트의 추론을 위해 설계되었습니다.
#===========================================================================================================
# (1) 자동 단어 분할: "한국어로 무엇을 읽습니까? 스포츠 씨? 이 컨퍼런스는 4개의 iPhone 15 시리즈 모델을 제공합니다."
# (2) 수동 참여: "이름이 <ja>Saki입니까? <ja>?"
# 이 처리 결과는 주로 (중국어 = zh, 일본어 = ja, 영어 = en, 한국어 = ko)를 위한 것이며 실제로 혼합 처리를 위해 최대 97개의 언어를 지원합니다.
#===========================================================================================================

# ===========================================================================================================
# 分词功能:将文章或句子里的例如(中/英/日/韩),按不同语言自动识别并拆分,让它更适合TTS处理。
# 本代码专为各种 TTS 项目的前端文本多语种混合标注区分,多语言混合训练和推理而编写。
# ===========================================================================================================
# (1)自动分词:“韩语中的오빠读什么呢?あなたの体育の先生は誰ですか? 此次发布会带来了四款iPhone 15系列机型”
# (2)手动分词:“你的名字叫<ja>佐々木?<ja>吗?”
# 本处理结果主要针对(中文=zh , 日文=ja , 英文=en , 韩语=ko), 实际上可支持多达 97 种不同的语言混合处理。
# ===========================================================================================================


# 手动分词标签规范:<语言标签>文本内容</语言标签>
# 수동 단어 분할 태그 사양: <언어 태그> 텍스트 내용</언어 태그>
# Manual word segmentation tag specification: <language tags> text content </language tags>
# 手動分詞タグ仕様:<言語タグ>テキスト内容</言語タグ>
# ===========================================================================================================
# For manual word segmentation, labels need to appear in pairs, such as:
# 如需手动分词,标签需要成对出现,例如:“<ja>佐々木<ja>”  或者  “<ja>佐々木</ja>”
# 错误示范:“你的名字叫<ja>佐々木。” 此句子中出现的单个<ja>标签将被忽略,不会处理。
# Error demonstration: "Your name is <ja>佐々木。" Single <ja> tags that appear in this sentence will be ignored and will not be processed.
# ===========================================================================================================


# ===========================================================================================================
# 语音合成标记语言 SSML , 这里只支持它的标签(非 XML)Speech Synthesis Markup Language SSML, only its tags are supported here (not XML)
# 想支持更多的 SSML 标签?欢迎 PR! Want to support more SSML tags? PRs are welcome!
# 说明:除了中文以外,它也可改造成支持多语种 SSML ,不仅仅是中文。
# Note: In addition to Chinese, it can also be modified to support multi-language SSML, not just Chinese.
# ===========================================================================================================
# 中文实现:Chinese implementation:
# 【SSML】<number>=中文大写数字读法(单字)
# 【SSML】<telephone>=数字转成中文电话号码大写汉字(单字)
# 【SSML】<currency>=按金额发音。
# 【SSML】<date>=按日期发音。支持 2024年08月24, 2024/8/24, 2024-08, 08-24, 24 等输入。
# ===========================================================================================================
class LangSSML:
    
    def __init__(self):
        # 纯数字
        self._zh_numerals_number = {
                '0': '零',
                '1': '一',
                '2': '二',
                '3': '三',
                '4': '四',
                '5': '五',
                '6': '六',
                '7': '七',
                '8': '八',
                '9': '九'
            }
    
    # 将2024/8/24, 2024-08, 08-24, 24 标准化“年月日”
    # Standardize 2024/8/24, 2024-08, 08-24, 24 to "year-month-day"
    def _format_chinese_data(self, date_str:str):
        # 处理日期格式
        input_date = date_str
        if date_str is None or date_str.strip() == "":return ""
        date_str = re.sub(r"[\/\._|年|月]","-",date_str)
        date_str = re.sub(r"日",r"",date_str)
        date_arrs = date_str.split(' ')
        if len(date_arrs) == 1 and ":" in date_arrs[0]:
            time_str = date_arrs[0]
            date_arrs = []
        else:
            time_str = date_arrs[1] if len(date_arrs) >=2 else ""
        def nonZero(num,cn,func=None):
            if func is not None:num=func(num)
            return f"{num}{cn}" if num is not None and num != "" and num != "0" else ""
        f_number = self.to_chinese_number
        f_currency = self.to_chinese_currency
        # year, month, day
        year_month_day = ""
        if len(date_arrs) > 0:
            year, month, day = "","",""
            parts = date_arrs[0].split('-')
            if len(parts) == 3:  # 格式为 YYYY-MM-DD
                year, month, day = parts
            elif len(parts) == 2:  # 格式为 MM-DD 或 YYYY-MM
                if len(parts[0]) == 4:  # 年-月
                    year, month = parts
                else:month, day = parts # 月-日
            elif len(parts[0]) > 0:  # 仅有月-日或年
                if len(parts[0]) == 4:
                    year = parts[0]
                else:day = parts[0]
            year,month,day = nonZero(year,"年",f_number),nonZero(month,"月",f_currency),nonZero(day,"日",f_currency)
            year_month_day = re.sub(r"([年|月|日])+",r"\1",f"{year}{month}{day}")
        # hours, minutes, seconds
        time_str = re.sub(r"[\/\.\-:_]",":",time_str)
        time_arrs = time_str.split(":")
        hours, minutes, seconds = "","",""
        if len(time_arrs) == 3: # H/M/S
            hours, minutes, seconds = time_arrs
        elif len(time_arrs) == 2:# H/M
            hours, minutes = time_arrs
        elif len(time_arrs[0]) > 0:hours = f'{time_arrs[0]}点'  # H
        if len(time_arrs) > 1:
            hours, minutes, seconds = nonZero(hours,"点",f_currency),nonZero(minutes,"分",f_currency),nonZero(seconds,"秒",f_currency)
        hours_minutes_seconds = re.sub(r"([点|分|秒])+",r"\1",f"{hours}{minutes}{seconds}")
        output_date = f"{year_month_day}{hours_minutes_seconds}"
        return output_date
    
    # 【SSML】number=中文大写数字读法(单字)
    # Chinese Numbers(single word)
    def to_chinese_number(self, num:str):
        pattern = r'(\d+)'
        zh_numerals = self._zh_numerals_number
        arrs = re.split(pattern, num)
        output = ""
        for item in arrs:
            if re.match(pattern,item):
                output += ''.join(zh_numerals[digit] if digit in zh_numerals else "" for digit in str(item))
            else:output += item
        output = output.replace(".","点")
        return output
    
    # 【SSML】telephone=数字转成中文电话号码大写汉字(单字)
    # Convert numbers to Chinese phone numbers in uppercase Chinese characters(single word)
    def to_chinese_telephone(self, num:str):
        output = self.to_chinese_number(num.replace("+86","")) # zh +86
        output = output.replace("一","幺")
        return output
    
    # 【SSML】currency=按金额发音。
    # Digital processing from GPT_SoVITS num.py (thanks)
    def to_chinese_currency(self, num:str):
        pattern = r'(\d+)'
        arrs = re.split(pattern, num)
        output = ""
        for item in arrs:
            if re.match(pattern,item):
                output += num2str(item)
            else:output += item
        output = output.replace(".","点")
        return output
    
    # 【SSML】date=按日期发音。支持 2024年08月24, 2024/8/24, 2024-08, 08-24, 24 等输入。
    def to_chinese_date(self, num:str):
        chinese_date = self._format_chinese_data(num)
        return chinese_date


class LangSegment:

    def __init__(self):

        self.langid = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)

        self._text_cache = None
        self._text_lasts = None
        self._text_langs = None
        self._lang_count = None
        self._lang_eos =   None
    
        # 可自定义语言匹配标签:カスタマイズ可能な言語対応タグ:사용자 지정 가능한 언어 일치 태그:
        # Customizable language matching tags: These are supported,이 표현들은 모두 지지합니다
        # <zh>你好<zh> , <ja>佐々木</ja> , <en>OK<en> , <ko>오빠</ko> 这些写法均支持
        self.SYMBOLS_PATTERN = r'(<([a-zA-Z|-]*)>(.*?)<\/*[a-zA-Z|-]*>)'
        
        # 语言过滤组功能, 可以指定保留语言。不在过滤组中的语言将被清除。您可随心搭配TTS语音合成所支持的语言。
        # 언어 필터 그룹 기능을 사용하면 예약된 언어를 지정할 수 있습니다. 필터 그룹에 없는 언어는 지워집니다. TTS 텍스트에서 지원하는 언어를 원하는 대로 일치시킬 수 있습니다.
        # 言語フィルターグループ機能では、予約言語を指定できます。フィルターグループに含まれていない言語はクリアされます。TTS音声合成がサポートする言語を自由に組み合わせることができます。
        # The language filter group function allows you to specify reserved languages. 
        # Languages not in the filter group will be cleared. You can match the languages supported by TTS Text To Speech as you like.
        # 排名越前,优先级越高,The higher the ranking, the higher the priority,ランキングが上位になるほど、優先度が高くなります。
        
        # 系统默认过滤器。System default filter。(ISO 639-1 codes given)
        # ----------------------------------------------------------------------------------------------------------------------------------
        # "zh"中文=Chinese ,"en"英语=English ,"ja"日语=Japanese ,"ko"韩语=Korean ,"fr"法语=French ,"vi"越南语=Vietnamese , "ru"俄语=Russian
        # "th"泰语=Thai
        # ----------------------------------------------------------------------------------------------------------------------------------
        self.DEFAULT_FILTERS = ["zh", "ja", "ko", "en"]
        
        # 用户可自定义过滤器。User-defined filters
        self.Langfilters = self.DEFAULT_FILTERS[:] # 创建副本
        
        # 合并文本
        self.isLangMerge = True
        
        # 试验性支持:您可自定义添加:"fr"法语 , "vi"越南语。Experimental: You can customize to add: "fr" French, "vi" Vietnamese.
        # 请使用API启用:self.setfilters(["zh", "en", "ja", "ko", "fr", "vi" , "ru" , "th"]) # 您可自定义添加,如:"fr"法语 , "vi"越南语。
        
        # 预览版功能,自动启用或禁用,无需设置
        # Preview feature, automatically enabled or disabled, no settings required
        self.EnablePreview = False
    
        # 除此以外,它支持简写过滤器,只需按不同语种任意组合即可。
        # In addition to that, it supports abbreviation filters, allowing for any combination of different languages.
        # 示例:您可以任意指定多种组合,进行过滤
        # Example: You can specify any combination to filter
        
        # 中/日语言优先级阀值(评分范围为 0 ~ 1):评分低于设定阀值 <0.89 时,启用 filters 中的优先级。\n
        # 중/일본어 우선 순위 임계값(점수 범위 0-1): 점수가 설정된 임계값 <0.89보다 낮을 때 필터에서 우선 순위를 활성화합니다.
        # 中国語/日本語の優先度しきい値(スコア範囲0〜1):スコアが設定されたしきい値<0.89未満の場合、フィルターの優先度が有効になります。\n
        # Chinese and Japanese language priority threshold (score range is 0 ~ 1): The default threshold is 0.89.  \n
        # Only the common characters between Chinese and Japanese are processed with confidence and priority. \n
        self.LangPriorityThreshold = 0.89
    
        # Langfilters = ["zh"]              # 按中文识别
        # Langfilters = ["en"]              # 按英文识别
        # Langfilters = ["ja"]              # 按日文识别
        # Langfilters = ["ko"]              # 按韩文识别
        # Langfilters = ["zh_ja"]           # 中日混合识别
        # Langfilters = ["zh_en"]           # 中英混合识别
        # Langfilters = ["ja_en"]           # 日英混合识别
        # Langfilters = ["zh_ko"]           # 中韩混合识别
        # Langfilters = ["ja_ko"]           # 日韩混合识别
        # Langfilters = ["en_ko"]           # 英韩混合识别
        # Langfilters = ["zh_ja_en"]        # 中日英混合识别
        # Langfilters = ["zh_ja_en_ko"]     # 中日英韩混合识别
        
        # 更多过滤组合,请您随意。。。For more filter combinations, please feel free to......
        # より多くのフィルターの組み合わせ、お気軽に。。。더 많은 필터 조합을 원하시면 자유롭게 해주세요. .....
        
        # 可选保留:支持中文数字拼音格式,更方便前端实现拼音音素修改和推理,默认关闭 False 。
        # 开启后 True ,括号内的数字拼音格式均保留,并识别输出为:"zh"中文。
        self.keepPinyin = False 
    
        # DEFINITION
        self.PARSE_TAG = re.compile(r'(⑥\$*\d+[\d]{6,}⑥)')

        self.LangSSML = LangSSML()

    def _clears(self):
        self._text_cache = None
        self._text_lasts = None
        self._text_langs = None
        self._text_waits = None
        self._lang_count = None
        self._lang_eos   = None
    
    def _is_english_word(self, word):
        return bool(re.match(r'^[a-zA-Z]+$', word))

    def _is_chinese(self, word):
        for char in word:
            if '\u4e00' <= char <= '\u9fff':
                return True
        return False

    def _is_japanese_kana(self, word):
        pattern = re.compile(r'[\u3040-\u309F\u30A0-\u30FF]+')
        matches = pattern.findall(word)
        return len(matches) > 0
    
    def _insert_english_uppercase(self, word):
        modified_text = re.sub(r'(?<!\b)([A-Z])', r' \1', word)
        modified_text = modified_text.strip('-')
        return modified_text + " "

    def _split_camel_case(self, word):
        return re.sub(r'(?<!^)(?=[A-Z])', ' ', word)
    
    def _statistics(self, language, text):
        # Language word statistics:
        # Chinese characters usually occupy double bytes
        if self._lang_count is None or not isinstance(self._lang_count, defaultdict):
            self._lang_count = defaultdict(int)
        lang_count = self._lang_count
        if not "|" in language:
            lang_count[language] += int(len(text)*2) if language == "zh" else len(text)
        self._lang_count = lang_count
    
    def _clear_text_number(self, text):
        if text == "\n":return text,False # Keep Line Breaks
        clear_text = re.sub(r'([^\w\s]+)','',re.sub(r'\n+','',text)).strip()
        is_number = len(re.sub(re.compile(r'(\d+)'),'',clear_text)) == 0
        return clear_text,is_number
    
    def _saveData(self, words,language:str,text:str,score:float,symbol=None):
        # Pre-detection
        clear_text , is_number = self._clear_text_number(text)
        # Merge the same language and save the results
        preData = words[-1] if len(words) > 0 else None
        if symbol is not None:pass
        elif preData is not None and preData["symbol"] is None:
            if len(clear_text) == 0:language = preData["lang"]
            elif is_number == True:language = preData["lang"]
            _ , pre_is_number = self._clear_text_number(preData["text"])
            if (preData["lang"] == language):
                self._statistics(preData["lang"],text)
                text = preData["text"] + text
                preData["text"] = text
                return preData
            elif pre_is_number == True:
                text = f'{preData["text"]}{text}'
                words.pop()
        elif is_number == True: 
            priority_language = self._get_filters_string()[:2]
            if priority_language in "ja-zh-en-ko-fr-vi":language = priority_language
        data = {"lang":language,"text": text,"score":score,"symbol":symbol}
        filters = self.Langfilters
        if filters is None or len(filters) == 0 or "?" in language or   \
            language in filters or language in filters[0] or \
            filters[0] == "*" or filters[0] in "alls-mixs-autos":
            words.append(data)
            self._statistics(data["lang"],data["text"])
        return data

    def _addwords(self, words,language,text,score,symbol=None):
        if text == "\n":pass # Keep Line Breaks
        elif text is None or len(text.strip()) == 0:return True
        if language is None:language = ""
        language = language.lower()
        if language == 'en':text = self._insert_english_uppercase(text)
        # text = re.sub(r'[(())]', ',' , text) # Keep it.
        text_waits = self._text_waits
        ispre_waits = len(text_waits)>0
        preResult = text_waits.pop() if ispre_waits else None
        if preResult is None:preResult = words[-1] if len(words) > 0 else None
        if preResult and ("|" in preResult["lang"]):   
            pre_lang = preResult["lang"]
            if language in pre_lang:preResult["lang"] = language = language.split("|")[0]
            else:preResult["lang"]=pre_lang.split("|")[0]
            if ispre_waits:preResult = self._saveData(words,preResult["lang"],preResult["text"],preResult["score"],preResult["symbol"])
        pre_lang = preResult["lang"] if preResult else None
        if ("|" in language) and (pre_lang and not pre_lang in language and not "…" in language):language = language.split("|")[0]
        if "|" in language:self._text_waits.append({"lang":language,"text": text,"score":score,"symbol":symbol})
        else:self._saveData(words,language,text,score,symbol)
        return False
    
    def _get_prev_data(self, words):
        data = words[-1] if words and len(words) > 0 else None
        if data:return (data["lang"] , data["text"])
        return (None,"")

    def _match_ending(self, input , index):
        if input is None or len(input) == 0:return False,None
        input = re.sub(r'\s+', '', input)
        if len(input) == 0 or abs(index) > len(input):return False,None
        ending_pattern = re.compile(r'([「」“”‘’"\'::。.!!?.?])')
        return ending_pattern.match(input[index]),input[index]
    
    def _cleans_text(self, cleans_text):
        cleans_text = re.sub(r'(.*?)([^\w]+)', r'\1 ', cleans_text)
        cleans_text = re.sub(r'(.)\1+', r'\1', cleans_text)
        return cleans_text.strip()

    def _mean_processing(self, text:str):
        if text is None or (text.strip()) == "":return None , 0.0
        arrs = self._split_camel_case(text).split(" ")
        langs = []
        for t in arrs:
            if len(t.strip()) <= 3:continue
            language, score = self.langid.classify(t)
            langs.append({"lang":language})
        if len(langs) == 0:return None , 0.0
        return Counter([item['lang'] for item in langs]).most_common(1)[0][0],1.0
    
    def _lang_classify(self, cleans_text):
        language, score = self.langid.classify(cleans_text)
        # fix: Huggingface is np.float32
        if score is not None and isinstance(score, np.generic) and hasattr(score,"item"):
            score = score.item()
        score = round(score , 3)
        return language, score
    
    def _get_filters_string(self):
        filters = self.Langfilters
        return "-".join(filters).lower().strip() if filters is not None else ""
    
    def _parse_language(self, words , segment):
        LANG_JA = "ja"
        LANG_ZH = "zh"
        LANG_ZH_JA = f'{LANG_ZH}|{LANG_JA}'
        LANG_JA_ZH = f'{LANG_JA}|{LANG_ZH}'
        language = LANG_ZH
        regex_pattern = re.compile(r'([^\w\s]+)')
        lines = regex_pattern.split(segment)
        lines_max = len(lines)
        LANG_EOS =self._lang_eos
        for index, text in enumerate(lines):
            if len(text) == 0:continue
            EOS = index >= (lines_max - 1)
            nextId = index + 1
            nextText = lines[nextId] if not EOS else ""
            nextPunc = len(re.sub(regex_pattern,'',re.sub(r'\n+','',nextText)).strip()) == 0
            textPunc = len(re.sub(regex_pattern,'',re.sub(r'\n+','',text)).strip()) == 0
            if not EOS and (textPunc == True or ( len(nextText.strip()) >= 0 and nextPunc == True)):
                lines[nextId] = f'{text}{nextText}'
                continue
            number_tags = re.compile(r'(⑥\d{6,}⑥)')
            cleans_text = re.sub(number_tags, '' ,text)
            cleans_text = re.sub(r'\d+', '' ,cleans_text)
            cleans_text = self._cleans_text(cleans_text)
            # fix:Langid's recognition of short sentences is inaccurate, and it is spliced longer.
            if not EOS and len(cleans_text) <= 2:
                lines[nextId] = f'{text}{nextText}'
                continue
            language,score = self._lang_classify(cleans_text)
            prev_language , prev_text = self._get_prev_data(words)
            if language != LANG_ZH and all('\u4e00' <= c <= '\u9fff' for c in re.sub(r'\s','',cleans_text)):language,score = LANG_ZH,1
            if len(cleans_text) <= 5 and self._is_chinese(cleans_text):
                filters_string = self._get_filters_string()
                if score < self.LangPriorityThreshold and len(filters_string) > 0:
                    index_ja , index_zh = filters_string.find(LANG_JA) , filters_string.find(LANG_ZH)
                    if index_ja != -1 and index_ja < index_zh:language = LANG_JA
                    elif index_zh != -1 and index_zh < index_ja:language = LANG_ZH
                if self._is_japanese_kana(cleans_text):language = LANG_JA
                elif len(cleans_text) > 2 and score > 0.90:pass
                elif EOS and LANG_EOS:language = LANG_ZH if len(cleans_text) <= 1 else language
                else:
                    LANG_UNKNOWN = LANG_ZH_JA if language == LANG_ZH or (len(cleans_text) <=2 and prev_language == LANG_ZH) else LANG_JA_ZH
                    match_end,match_char = self._match_ending(text, -1)
                    referen = prev_language in LANG_UNKNOWN or LANG_UNKNOWN in prev_language if prev_language else False
                    if match_char in "。.": language = prev_language if referen and len(words) > 0 else language
                    else:language = f"{LANG_UNKNOWN}|…"
            text,*_ = re.subn(number_tags , self._restore_number , text )
            self._addwords(words,language,text,score)
    
    # ----------------------------------------------------------
    # 【SSML】中文数字处理:Chinese Number Processing (SSML support)
    # 这里默认都是中文,用于处理 SSML 中文标签。当然可以支持任意语言,例如:
    # The default here is Chinese, which is used to process SSML Chinese tags. Of course, any language can be supported, for example:
    # 中文电话号码:<telephone>1234567</telephone>
    # 中文数字号码:<number>1234567</number>
    def _process_symbol_SSML(self, words,data):
        tag , match = data
        language = SSML = match[1]
        text = match[2]
        score = 1.0
        if SSML == "telephone":
            # 中文-电话号码
            language = "zh"
            text = self.LangSSML.to_chinese_telephone(text)
        elif SSML == "number":
            # 中文-数字读法
            language = "zh"
            text = self.LangSSML.to_chinese_number(text)
        elif SSML == "currency":
            # 中文-按金额发音
            language = "zh"
            text = self.LangSSML.to_chinese_currency(text)
        elif SSML == "date":
            # 中文-按金额发音
            language = "zh"
            text = self.LangSSML.to_chinese_date(text)
        self._addwords(words,language,text,score,SSML)
        
    # ----------------------------------------------------------
    def _restore_number(self, matche):
        value = matche.group(0)
        text_cache = self._text_cache
        if value in text_cache:
            process , data = text_cache[value]
            tag , match = data
            value = match
        return value

    def _pattern_symbols(self, item , text):
        if text is None:return text
        tag , pattern , process = item
        matches = pattern.findall(text)
        if len(matches) == 1 and "".join(matches[0]) == text:
            return text
        for i , match in enumerate(matches):
            key = f"⑥{tag}{i:06d}⑥"
            text = re.sub(pattern , key , text , count=1)
            self._text_cache[key] = (process , (tag , match))
        return text
    
    def _process_symbol(self, words,data):
        tag , match = data
        language = match[1]
        text = match[2]
        score = 1.0
        filters = self._get_filters_string()
        if language not in filters:
            self._process_symbol_SSML(words,data)
        else:
            self._addwords(words,language,text,score,True)
    
    def _process_english(self, words,data):
        tag , match = data
        text = match[0]
        filters = self._get_filters_string()
        priority_language = filters[:2]
        # Preview feature, other language segmentation processing
        enablePreview = self.EnablePreview
        if enablePreview == True:
            # Experimental: Other language support
            regex_pattern = re.compile(r'(.*?[。.??!!]+[\n]{,1})')
            lines = regex_pattern.split(text)
            for index , text in enumerate(lines):
                if len(text.strip()) == 0:continue
                cleans_text = self._cleans_text(text)
                language,score = self._lang_classify(cleans_text)
                if language not in filters:
                    language,score = self._mean_processing(cleans_text)
                if language is None or score <= 0.0:continue
                elif language in filters:pass # pass
                elif score >= 0.95:continue # High score, but not in the filter, excluded.
                elif score <= 0.15 and filters[:2] == "fr":language = priority_language
                else:language = "en"
                self._addwords(words,language,text,score)
        else:
            # Default is English
            language, score = "en", 1.0
            self._addwords(words,language,text,score)
    
    def _process_Russian(self, words,data):
        tag , match = data
        text = match[0]
        language = "ru"
        score = 1.0
        self._addwords(words,language,text,score)

    def _process_Thai(self, words,data):
        tag , match = data
        text = match[0]
        language = "th"
        score = 1.0
        self._addwords(words,language,text,score)
    
    def _process_korean(self, words,data):
        tag , match = data
        text = match[0]
        language = "ko"
        score = 1.0
        self._addwords(words,language,text,score)
    
    def _process_quotes(self, words,data):
        tag , match = data
        text = "".join(match)
        childs = self.PARSE_TAG.findall(text)
        if len(childs) > 0:
            self._process_tags(words , text , False)
        else:
            cleans_text = self._cleans_text(match[1])
            if len(cleans_text) <= 5:
                self._parse_language(words,text)
            else:
                language,score = self._lang_classify(cleans_text)
                self._addwords(words,language,text,score)
    
    def _process_pinyin(self, words,data):
        tag , match = data
        text = match
        language = "zh"
        score = 1.0
        self._addwords(words,language,text,score)

    def _process_number(self, words,data): # "$0" process only
        """
        Numbers alone cannot accurately identify language.
        Because numbers are universal in all languages.
        So it won't be executed here, just for testing.
        """
        tag , match = data
        language = words[0]["lang"] if len(words) > 0 else "zh"
        text = match
        score = 0.0
        self._addwords(words,language,text,score)
    
    def _process_tags(self, words , text , root_tag):
        text_cache = self._text_cache
        segments = re.split(self.PARSE_TAG, text)
        segments_len = len(segments) - 1
        for index , text in enumerate(segments):
            if root_tag:self._lang_eos = index >= segments_len
            if self.PARSE_TAG.match(text):
                process , data = text_cache[text]
                if process:process(words , data)
            else:
                self._parse_language(words , text)
        return words
    
    def _merge_results(self, words):
        new_word = []
        for index , cur_data in enumerate(words):
            if "symbol" in cur_data:del cur_data["symbol"]
            if index == 0:new_word.append(cur_data)
            else:
                pre_data = new_word[-1]
                if cur_data["lang"] == pre_data["lang"]:
                    pre_data["text"] = f'{pre_data["text"]}{cur_data["text"]}'
                else:new_word.append(cur_data)
        return new_word
    
    def _parse_symbols(self, text):
        TAG_NUM = "00" # "00" => default channels , "$0" => testing channel
        TAG_S1,TAG_S2,TAG_P1,TAG_P2,TAG_EN,TAG_KO,TAG_RU,TAG_TH = "$1" ,"$2" ,"$3" ,"$4" ,"$5" ,"$6" ,"$7","$8"
        TAG_BASE = re.compile(fr'(([【《((“‘"\']*[LANGUAGE]+[\W\s]*)+)')
        # Get custom language filter
        filters = self.Langfilters
        filters = filters if filters is not None else ""
        # =======================================================================================================
        # Experimental: Other language support.Thử nghiệm: Hỗ trợ ngôn ngữ khác.Expérimental : prise en charge d’autres langues.
        # 相关语言字符如有缺失,熟悉相关语言的朋友,可以提交把缺失的发音符号补全。
        # If relevant language characters are missing, friends who are familiar with the relevant languages can submit a submission to complete the missing pronunciation symbols.
        # S'il manque des caractères linguistiques pertinents, les amis qui connaissent les langues concernées peuvent soumettre une soumission pour compléter les symboles de prononciation manquants.
        # Nếu thiếu ký tự ngôn ngữ liên quan, những người bạn quen thuộc với ngôn ngữ liên quan có thể gửi bài để hoàn thành các ký hiệu phát âm còn thiếu.
        # -------------------------------------------------------------------------------------------------------
        # Preview feature, other language support
        enablePreview = self.EnablePreview
        if "fr" in filters or \
           "vi" in filters:enablePreview = True
        self.EnablePreview = enablePreview
        # 实验性:法语字符支持。Prise en charge des caractères français
        RE_FR = "" if not enablePreview else "àáâãäåæçèéêëìíîïðñòóôõöùúûüýþÿ"
        # 实验性:越南语字符支持。Hỗ trợ ký tự tiếng Việt
        RE_VI = "" if not enablePreview else "đơưăáàảãạắằẳẵặấầẩẫậéèẻẽẹếềểễệíìỉĩịóòỏõọốồổỗộớờởỡợúùủũụứừửữựôâêơưỷỹ"
        # -------------------------------------------------------------------------------------------------------
        # Basic options:
        process_list = [
            (  TAG_S1  , re.compile(self.SYMBOLS_PATTERN) , self._process_symbol  ),               # Symbol Tag
            (  TAG_KO  , re.compile(re.sub(r'LANGUAGE',f'\uac00-\ud7a3',TAG_BASE.pattern))    , self._process_korean  ),              # Korean words
            (  TAG_TH  , re.compile(re.sub(r'LANGUAGE',f'\u0E00-\u0E7F',TAG_BASE.pattern))    , self._process_Thai ),                 # Thai words support.
            (  TAG_RU  , re.compile(re.sub(r'LANGUAGE',f'А-Яа-яЁё',TAG_BASE.pattern))         , self._process_Russian ),              # Russian words support.
            (  TAG_NUM , re.compile(r'(\W*\d+\W+\d*\W*\d*)')        , self._process_number  ),  # Number words, Universal in all languages, Ignore it.
            (  TAG_EN  , re.compile(re.sub(r'LANGUAGE',f'a-zA-Z{RE_FR}{RE_VI}',TAG_BASE.pattern))    , self._process_english ),       # English words + Other language support.
            (  TAG_P1  , re.compile(r'(["\'])(.*?)(\1)')         , self._process_quotes  ),     # Regular quotes
            (  TAG_P2  , re.compile(r'([\n]*[【《((“‘])([^【《((“‘’”))》】]{3,})([’”))》】][\W\s]*[\n]{,1})')   , self._process_quotes  ),  # Special quotes, There are left and right.
        ]
        # Extended options: Default False
        if self.keepPinyin == True:process_list.insert(1 , 
            (  TAG_S2  , re.compile(r'([\(({](?:\s*\w*\d\w*\s*)+[})\)])') , self._process_pinyin  ),     # Chinese Pinyin Tag. 
        ) 
        # -------------------------------------------------------------------------------------------------------
        words = []
        lines = re.findall(r'.*\n*', re.sub(self.PARSE_TAG, '' ,text))
        for index , text in enumerate(lines):
            if len(text.strip()) == 0:continue
            self._lang_eos = False
            self._text_cache = {}
            for item in process_list:
                text = self._pattern_symbols(item , text)
            cur_word = self._process_tags([] , text , True)
            if len(cur_word) == 0:continue
            cur_data = cur_word[0] if len(cur_word) > 0 else None
            pre_data = words[-1] if len(words) > 0 else None
            if cur_data and pre_data and cur_data["lang"] == pre_data["lang"] \
                and cur_data["symbol"] == False and pre_data["symbol"] :
                cur_data["text"] = f'{pre_data["text"]}{cur_data["text"]}'
                words.pop()
            words += cur_word
        if self.isLangMerge == True:words = self._merge_results(words)
        lang_count = self._lang_count
        if lang_count and len(lang_count) > 0:
            lang_count = dict(sorted(lang_count.items(), key=lambda x: x[1], reverse=True))
            lang_count = list(lang_count.items())
            self._lang_count = lang_count
        return words

    def setfilters(self, filters):
        # 当过滤器更改时,清除缓存
        # 필터가 변경되면 캐시를 지웁니다.
        # フィルタが変更されると、キャッシュがクリアされます
        # When the filter changes, clear the cache
        if self.Langfilters != filters:
            self._clears()
            self.Langfilters = filters
       
    def getfilters(self):
        return self.Langfilters
    
    def setPriorityThreshold(self, threshold:float):
        self.LangPriorityThreshold = threshold

    def getPriorityThreshold(self):
        return self.LangPriorityThreshold

    def getCounts(self):
        lang_count = self._lang_count
        if lang_count is not None:return lang_count
        text_langs = self._text_langs
        if text_langs is None or len(text_langs) == 0:return [("zh",0)]
        lang_counts = defaultdict(int)
        for d in text_langs:lang_counts[d['lang']] += int(len(d['text'])*2) if d['lang'] == "zh" else len(d['text'])
        lang_counts = dict(sorted(lang_counts.items(), key=lambda x: x[1], reverse=True))
        lang_counts = list(lang_counts.items())
        self._lang_count = lang_counts
        return lang_counts

    def getTexts(self, text:str):
        if text is None or len(text.strip()) == 0:
            self._clears()
            return []
        # lasts
        text_langs = self._text_langs
        if self._text_lasts == text and text_langs is not None:return text_langs 
        # parse
        self._text_waits = []
        self._lang_count = None
        self._text_lasts = text
        text = self._parse_symbols(text)
        self._text_langs = text
        return text
    
    def classify(self, text:str):
        return self.getTexts(text)

def printList(langlist):
    """
    功能:打印数组结果
    기능: 어레이 결과 인쇄
    機能:配列結果を印刷
    Function: Print array results
    """
    print("\n===================【打印结果】===================")
    if langlist is None or len(langlist) == 0:
        print("无内容结果,No content result")
        return
    for line in langlist:
        print(line)
    pass  
    


def main():
    
    # -----------------------------------
    # 更新日志:新版本分词更加精准。
    # Changelog: The new version of the word segmentation is more accurate.
    # チェンジログ:新しいバージョンの単語セグメンテーションはより正確です。
    # Changelog: 분할이라는 단어의 새로운 버전이 더 정확합니다.
    # -----------------------------------
    
    # 输入示例1:(包含日文,中文)Input Example 1: (including Japanese, Chinese)
    # text = "“昨日は雨が降った,音楽、映画。。。”你今天学习日语了吗?春は桜の季節です。语种分词是语音合成必不可少的环节。言語分詞は音声合成に欠かせない環節である!"
    
    # 输入示例2:(包含日文,中文)Input Example 1: (including Japanese, Chinese)
    # text = "欢迎来玩。東京,は日本の首都です。欢迎来玩.  太好了!"
    
    # 输入示例3:(包含日文,中文)Input Example 1: (including Japanese, Chinese)
    # text = "明日、私たちは海辺にバカンスに行きます。你会说日语吗:“中国語、話せますか” 你的日语真好啊!"
    
    
    # 输入示例4:(包含日文,中文,韩语,英文)Input Example 4: (including Japanese, Chinese, Korean, English)
    # text = "你的名字叫<ja>佐々木?<ja>吗?韩语中的안녕 오빠读什么呢?あなたの体育の先生は誰ですか? 此次发布会带来了四款iPhone 15系列机型和三款Apple Watch等一系列新品,这次的iPad Air采用了LCD屏幕" 
    
    
    # 试验性支持:"fr"法语 , "vi"越南语 , "ru"俄语 , "th"泰语。Experimental: Other language support.
    langsegment = LangSegment()
    langsegment.setfilters(["fr", "vi" , "ja", "zh", "ko", "en" , "ru" , "th"])
    text = """
我喜欢在雨天里听音乐。
I enjoy listening to music on rainy days.
雨の日に音楽を聴くのが好きです。
비 오는 날에 음악을 듣는 것을 즐깁니다。
J'aime écouter de la musique les jours de pluie.
Tôi thích nghe nhạc vào những ngày mưa.
Мне нравится слушать музыку в дождливую погоду.
ฉันชอบฟังเพลงในวันที่ฝนตก
"""



    # 进行分词:(接入TTS项目仅需一行代码调用)Segmentation: (Only one line of code is required to access the TTS project)
    langlist = langsegment.getTexts(text)
    printList(langlist)
    
    
    # 语种统计:Language statistics:
    print("\n===================【语种统计】===================")
    # 获取所有语种数组结果,根据内容字数降序排列
    # Get the array results in all languages, sorted in descending order according to the number of content words
    langCounts = langsegment.getCounts()
    print(langCounts , "\n")
    
    # 根据结果获取内容的主要语种 (语言,字数含标点)
    # Get the main language of content based on the results (language, word count including punctuation)
    lang , count = langCounts[0] 
    print(f"输入内容的主要语言为 = {lang} ,字数 = {count}")
    print("==================================================\n")
    
    
    # 分词输出:lang=语言,text=内容。Word output: lang = language, text = content
    # ===================【打印结果】===================
    # {'lang': 'zh', 'text': '你的名字叫'}
    # {'lang': 'ja', 'text': '佐々木?'}
    # {'lang': 'zh', 'text': '吗?韩语中的'}
    # {'lang': 'ko', 'text': '안녕 오빠'}
    # {'lang': 'zh', 'text': '读什么呢?'}
    # {'lang': 'ja', 'text': 'あなたの体育の先生は誰ですか?'}
    # {'lang': 'zh', 'text': ' 此次发布会带来了四款'}
    # {'lang': 'en', 'text': 'i Phone  '}
    # {'lang': 'zh', 'text': '15系列机型和三款'}
    # {'lang': 'en', 'text': 'Apple Watch '}
    # {'lang': 'zh', 'text': '等一系列新品,这次的'}
    # {'lang': 'en', 'text': 'i Pad Air '}
    # {'lang': 'zh', 'text': '采用了'}
    # {'lang': 'en', 'text': 'L C D '}
    # {'lang': 'zh', 'text': '屏幕'}
    # ===================【语种统计】===================
    
    # ===================【语种统计】===================
    # [('zh', 51), ('ja', 19), ('en', 18), ('ko', 5)]

    # 输入内容的主要语言为 = zh ,字数 = 51
    # ==================================================
    # The main language of the input content is = zh, word count = 51
    
    
if __name__ == "__main__":
    main()