Spaces:
Runtime error
Runtime error
charlesnchr
commited on
Commit
•
3715c63
1
Parent(s):
ba9a83a
First version with RGB image input
Browse files- NNfunctions.py +290 -0
- app.py +11 -51
- model/DIV2K_randomised_3x3_20200317.pth +3 -0
- models.py +1997 -0
- requirements.txt +6 -1
NNfunctions.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
|
8 |
+
import skimage.io
|
9 |
+
import skimage.transform
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import glob
|
12 |
+
|
13 |
+
import torch.optim as optim
|
14 |
+
import torchvision
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
from skimage import exposure
|
17 |
+
|
18 |
+
toTensor = transforms.ToTensor()
|
19 |
+
toPIL = transforms.ToPILImage()
|
20 |
+
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
from models import *
|
26 |
+
|
27 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
28 |
+
|
29 |
+
def remove_dataparallel_wrapper(state_dict):
|
30 |
+
r"""Converts a DataParallel model to a normal one by removing the "module."
|
31 |
+
wrapper in the module dictionary
|
32 |
+
|
33 |
+
Args:
|
34 |
+
state_dict: a torch.nn.DataParallel state dictionary
|
35 |
+
"""
|
36 |
+
from collections import OrderedDict
|
37 |
+
|
38 |
+
new_state_dict = OrderedDict()
|
39 |
+
for k, vl in state_dict.items():
|
40 |
+
name = k[7:] # remove 'module.' of DataParallel
|
41 |
+
new_state_dict[name] = vl
|
42 |
+
|
43 |
+
return new_state_dict
|
44 |
+
|
45 |
+
from argparse import Namespace
|
46 |
+
|
47 |
+
|
48 |
+
def GetOptions():
|
49 |
+
# training options
|
50 |
+
opt = Namespace()
|
51 |
+
opt.model = 'rcan'
|
52 |
+
opt.n_resgroups = 3
|
53 |
+
opt.n_resblocks = 10
|
54 |
+
opt.n_feats = 96
|
55 |
+
opt.reduction = 16
|
56 |
+
opt.narch = 0
|
57 |
+
opt.norm = 'minmax'
|
58 |
+
|
59 |
+
opt.cpu = False
|
60 |
+
opt.multigpu = False
|
61 |
+
opt.undomulti = False
|
62 |
+
opt.device = torch.device('cuda' if torch.cuda.is_available() and not opt.cpu else 'cpu')
|
63 |
+
|
64 |
+
opt.imageSize = 512
|
65 |
+
opt.weights = "model/simrec_simin_gtout_rcan_512_2_ntrain790-final.pth"
|
66 |
+
opt.root = "model/0080.jpg"
|
67 |
+
opt.out = "model/myout"
|
68 |
+
|
69 |
+
opt.task = 'simin_gtout'
|
70 |
+
opt.scale = 1
|
71 |
+
opt.nch_in = 9
|
72 |
+
opt.nch_out = 1
|
73 |
+
|
74 |
+
|
75 |
+
return opt
|
76 |
+
|
77 |
+
|
78 |
+
def GetOptions_allRnd_0215():
|
79 |
+
# training options
|
80 |
+
opt = Namespace()
|
81 |
+
opt.model = 'rcan'
|
82 |
+
opt.n_resgroups = 3
|
83 |
+
opt.n_resblocks = 10
|
84 |
+
opt.n_feats = 48
|
85 |
+
opt.reduction = 16
|
86 |
+
opt.narch = 0
|
87 |
+
opt.norm = 'adapthist'
|
88 |
+
|
89 |
+
opt.cpu = False
|
90 |
+
opt.multigpu = False
|
91 |
+
opt.undomulti = False
|
92 |
+
opt.device = torch.device('cuda' if torch.cuda.is_available() and not opt.cpu else 'cpu')
|
93 |
+
|
94 |
+
opt.imageSize = 512
|
95 |
+
opt.weights = "model/0216_SIMRec_0214_rndAll_rcan_continued.pth"
|
96 |
+
opt.root = "model/0080.jpg"
|
97 |
+
opt.out = "model/myout"
|
98 |
+
|
99 |
+
opt.task = 'simin_gtout'
|
100 |
+
opt.scale = 1
|
101 |
+
opt.nch_in = 9
|
102 |
+
opt.nch_out = 1
|
103 |
+
|
104 |
+
|
105 |
+
return opt
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def GetOptions_allRnd_0317():
|
110 |
+
# training options
|
111 |
+
opt = Namespace()
|
112 |
+
opt.model = 'rcan'
|
113 |
+
opt.n_resgroups = 3
|
114 |
+
opt.n_resblocks = 10
|
115 |
+
opt.n_feats = 96
|
116 |
+
opt.reduction = 16
|
117 |
+
opt.narch = 0
|
118 |
+
opt.norm = 'minmax'
|
119 |
+
|
120 |
+
opt.cpu = False
|
121 |
+
opt.multigpu = False
|
122 |
+
opt.undomulti = False
|
123 |
+
opt.device = torch.device('cuda' if torch.cuda.is_available() and not opt.cpu else 'cpu')
|
124 |
+
|
125 |
+
opt.imageSize = 512
|
126 |
+
opt.weights = "model/DIV2K_randomised_3x3_20200317.pth"
|
127 |
+
opt.root = "model/0080.jpg"
|
128 |
+
opt.out = "model/myout"
|
129 |
+
|
130 |
+
opt.task = 'simin_gtout'
|
131 |
+
opt.scale = 1
|
132 |
+
opt.nch_in = 9
|
133 |
+
opt.nch_out = 1
|
134 |
+
|
135 |
+
|
136 |
+
return opt
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
def LoadModel(opt):
|
141 |
+
print('Loading model')
|
142 |
+
print(opt)
|
143 |
+
|
144 |
+
net = GetModel(opt)
|
145 |
+
print('loading checkpoint',opt.weights)
|
146 |
+
checkpoint = torch.load(opt.weights,map_location=opt.device)
|
147 |
+
|
148 |
+
if type(checkpoint) is dict:
|
149 |
+
state_dict = checkpoint['state_dict']
|
150 |
+
else:
|
151 |
+
state_dict = checkpoint
|
152 |
+
|
153 |
+
if opt.undomulti:
|
154 |
+
state_dict = remove_dataparallel_wrapper(state_dict)
|
155 |
+
net.load_state_dict(state_dict)
|
156 |
+
|
157 |
+
return net
|
158 |
+
|
159 |
+
|
160 |
+
def prepimg(stack,self):
|
161 |
+
|
162 |
+
inputimg = stack[:9]
|
163 |
+
|
164 |
+
if self.nch_in == 6:
|
165 |
+
inputimg = inputimg[[0,1,3,4,6,7]]
|
166 |
+
elif self.nch_in == 3:
|
167 |
+
inputimg = inputimg[[0,4,8]]
|
168 |
+
|
169 |
+
if inputimg.shape[1] > 512 or inputimg.shape[2] > 512:
|
170 |
+
print('Over 512x512! Cropping')
|
171 |
+
inputimg = inputimg[:,:512,:512]
|
172 |
+
|
173 |
+
|
174 |
+
if self.norm == 'convert': # raw img from microscope, needs normalisation and correct frame ordering
|
175 |
+
print('Raw input assumed - converting')
|
176 |
+
# NCHW
|
177 |
+
# I = np.zeros((9,opt.imageSize,opt.imageSize),dtype='uint16')
|
178 |
+
|
179 |
+
# for t in range(9):
|
180 |
+
# frame = inputimg[t]
|
181 |
+
# frame = 120 / np.max(frame) * frame
|
182 |
+
# frame = np.rot90(np.rot90(np.rot90(frame)))
|
183 |
+
# I[t,:,:] = frame
|
184 |
+
# inputimg = I
|
185 |
+
|
186 |
+
inputimg = np.rot90(inputimg,axes=(1,2))
|
187 |
+
inputimg = inputimg[[6,7,8,3,4,5,0,1,2]] # could also do [8,7,6,5,4,3,2,1,0]
|
188 |
+
for i in range(len(inputimg)):
|
189 |
+
inputimg[i] = 100 / np.max(inputimg[i]) * inputimg[i]
|
190 |
+
elif 'convert' in self.norm:
|
191 |
+
fac = float(self.norm[7:])
|
192 |
+
inputimg = np.rot90(inputimg,axes=(1,2))
|
193 |
+
inputimg = inputimg[[6,7,8,3,4,5,0,1,2]] # could also do [8,7,6,5,4,3,2,1,0]
|
194 |
+
for i in range(len(inputimg)):
|
195 |
+
inputimg[i] = fac * 255 / np.max(inputimg[i]) * inputimg[i]
|
196 |
+
|
197 |
+
|
198 |
+
inputimg = inputimg.astype('float') / np.max(inputimg) # used to be /255
|
199 |
+
widefield = np.mean(inputimg,0)
|
200 |
+
|
201 |
+
if self.norm == 'adapthist':
|
202 |
+
for i in range(len(inputimg)):
|
203 |
+
inputimg[i] = exposure.equalize_adapthist(inputimg[i],clip_limit=0.001)
|
204 |
+
widefield = exposure.equalize_adapthist(widefield,clip_limit=0.001)
|
205 |
+
else:
|
206 |
+
# normalise
|
207 |
+
inputimg = torch.tensor(inputimg).float()
|
208 |
+
widefield = torch.tensor(widefield).float()
|
209 |
+
widefield = (widefield - torch.min(widefield)) / (torch.max(widefield) - torch.min(widefield))
|
210 |
+
|
211 |
+
if self.norm == 'minmax':
|
212 |
+
for i in range(len(inputimg)):
|
213 |
+
inputimg[i] = (inputimg[i] - torch.min(inputimg[i])) / (torch.max(inputimg[i]) - torch.min(inputimg[i]))
|
214 |
+
elif 'minmax' in self.norm:
|
215 |
+
fac = float(self.norm[6:])
|
216 |
+
for i in range(len(inputimg)):
|
217 |
+
inputimg[i] = fac * (inputimg[i] - torch.min(inputimg[i])) / (torch.max(inputimg[i]) - torch.min(inputimg[i]))
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
# otf = torch.tensor(otf.astype('float') / np.max(otf)).unsqueeze(0).float()
|
222 |
+
# gt = torch.tensor(gt.astype('float') / 255).unsqueeze(0).float()
|
223 |
+
# simimg = torch.tensor(simimg.astype('float') / 255).unsqueeze(0).float()
|
224 |
+
# widefield = torch.mean(inputimg,0).unsqueeze(0)
|
225 |
+
|
226 |
+
|
227 |
+
# normalise
|
228 |
+
# gt = (gt - torch.min(gt)) / (torch.max(gt) - torch.min(gt))
|
229 |
+
# simimg = (simimg - torch.min(simimg)) / (torch.max(simimg) - torch.min(simimg))
|
230 |
+
# widefield = (widefield - torch.min(widefield)) / (torch.max(widefield) - torch.min(widefield))
|
231 |
+
inputimg = torch.tensor(inputimg).float()
|
232 |
+
widefield = torch.tensor(widefield).float()
|
233 |
+
return inputimg,widefield
|
234 |
+
|
235 |
+
def save_image(data, filename,cmap):
|
236 |
+
sizes = np.shape(data)
|
237 |
+
fig = plt.figure()
|
238 |
+
fig.set_size_inches(1. * sizes[0] / sizes[1], 1, forward = False)
|
239 |
+
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
240 |
+
ax.set_axis_off()
|
241 |
+
fig.add_axes(ax)
|
242 |
+
ax.imshow(data, cmap=cmap)
|
243 |
+
plt.savefig(filename, dpi = sizes[0])
|
244 |
+
plt.close()
|
245 |
+
|
246 |
+
|
247 |
+
def EvaluateModel(net,opt,stack):
|
248 |
+
|
249 |
+
os.makedirs(opt.out, exist_ok=True)
|
250 |
+
|
251 |
+
print(stack.shape)
|
252 |
+
inputimg, widefield = prepimg(stack, opt)
|
253 |
+
|
254 |
+
if opt.norm == 'convert' or 'minmax' in opt.norm or 'adapthist' in opt.norm:
|
255 |
+
cmap = 'magma'
|
256 |
+
else:
|
257 |
+
cmap = 'gray'
|
258 |
+
|
259 |
+
# skimage.io.imsave('%s_wf.png' % outfile,(255*widefield.numpy()).astype('uint8'))
|
260 |
+
wf = (255*widefield.numpy()).astype('uint8')
|
261 |
+
wf_upscaled = skimage.transform.rescale(wf,1.5,order=3,multichannel=False) # should ideally be done by drawing on client side, in javascript
|
262 |
+
# save_image(wf_upscaled,'%s_wf.png' % outfile,cmap)
|
263 |
+
|
264 |
+
# skimage.io.imsave('%s.tif' % outfile, inputimg.numpy())
|
265 |
+
|
266 |
+
inputimg = inputimg.unsqueeze(0)
|
267 |
+
|
268 |
+
with torch.no_grad():
|
269 |
+
if opt.cpu:
|
270 |
+
sr = net(inputimg)
|
271 |
+
else:
|
272 |
+
sr = net(inputimg.cuda())
|
273 |
+
sr = sr.cpu()
|
274 |
+
sr = torch.clamp(sr,min=0,max=1)
|
275 |
+
print('min max',inputimg.min(),inputimg.max())
|
276 |
+
|
277 |
+
pil_sr_img = toPIL(sr[0])
|
278 |
+
|
279 |
+
if opt.norm == 'convert':
|
280 |
+
pil_sr_img = transforms.functional.rotate(pil_sr_img,-90)
|
281 |
+
|
282 |
+
#pil_sr_img.save('%s.png' % outfile) # true output for downloading, no LUT
|
283 |
+
sr_img = np.array(pil_sr_img)
|
284 |
+
sr_img = exposure.equalize_adapthist(sr_img,clip_limit=0.01)
|
285 |
+
# skimage.io.imsave('%s.png' % outfile, sr_img) # true out for downloading, no LUT
|
286 |
+
|
287 |
+
# sr_img = skimage.transform.rescale(sr_img,1.5,order=3,multichannel=False) # should ideally be done by drawing on client side, in javascript
|
288 |
+
# save_image(sr_img,'%s_sr.png' % outfile,cmap)
|
289 |
+
# return outfile + '_sr.png', outfile + '_wf.png', outfile + '.png'
|
290 |
+
return sr_img
|
app.py
CHANGED
@@ -7,67 +7,27 @@
|
|
7 |
|
8 |
from turtle import title
|
9 |
import gradio as gr
|
10 |
-
from huggingface_hub import from_pretrained_keras
|
11 |
-
import tensorflow as tf
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import io
|
15 |
import base64
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
def predict(image):
|
22 |
img = np.array(image)
|
23 |
-
|
24 |
-
|
25 |
-
im = tf.image.resize(img, (128, 128))
|
26 |
-
im = tf.cast(im, tf.float32) / 255.0
|
27 |
-
pred_mask = model.predict(im[tf.newaxis, ...])
|
28 |
-
|
29 |
-
|
30 |
-
# take the best performing class for each pixel
|
31 |
-
# the output of argmax looks like this [[1, 2, 0], ...]
|
32 |
-
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
33 |
-
|
34 |
-
|
35 |
-
# convert the prediction mask into binary masks for each class
|
36 |
-
binary_masks = {}
|
37 |
-
|
38 |
-
# when we take tf.argmax() over pred_mask, it becomes a tensor object
|
39 |
-
# the shape becomes TensorShape object, looking like this TensorShape([128])
|
40 |
-
# we need to take get shape, convert to list and take the best one
|
41 |
-
|
42 |
-
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
|
43 |
-
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
|
44 |
-
|
45 |
-
for cls in range(pred_mask.shape[-1]):
|
46 |
-
|
47 |
-
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
|
48 |
-
|
49 |
-
for row in range(rows):
|
50 |
-
|
51 |
-
for col in range(cols):
|
52 |
-
|
53 |
-
if pred_mask_arg[0][row][col] == cls:
|
54 |
-
|
55 |
-
binary_masks[f"mask_{cls}"][row][col] = 1
|
56 |
-
else:
|
57 |
-
binary_masks[f"mask_{cls}"][row][col] = 0
|
58 |
-
|
59 |
-
mask = binary_masks[f"mask_{cls}"]
|
60 |
-
mask *= 255
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
mask = tf.cast(mask, tf.uint8)
|
65 |
-
mask = mask.numpy().squeeze()
|
66 |
|
67 |
-
return
|
68 |
|
69 |
|
70 |
-
title = '<h1 style="text-align: center;">
|
71 |
|
72 |
description = """
|
73 |
## About
|
@@ -77,9 +37,9 @@ according to the pixels.
|
|
77 |
Upload a pet image and hit submit or select one from the given examples
|
78 |
"""
|
79 |
|
80 |
-
inputs = gr.inputs.Image(label="Upload a
|
81 |
outputs = [
|
82 |
-
gr.outputs.Image(label="
|
83 |
# , gr.outputs.Textbox(type="auto",label="Pet Prediction")
|
84 |
]
|
85 |
|
|
|
7 |
|
8 |
from turtle import title
|
9 |
import gradio as gr
|
|
|
|
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
12 |
import io
|
13 |
import base64
|
14 |
+
from NNfunctions import *
|
15 |
|
16 |
+
opt = GetOptions_allRnd_0317()
|
17 |
+
net = LoadModel(opt)
|
|
|
18 |
|
19 |
def predict(image):
|
20 |
img = np.array(image)
|
21 |
+
img = np.concatenate((img,img,img),axis=2)
|
22 |
+
img = np.transpose(img, (2,0,1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# sr,wf,out = EvaluateModel(net,opt,img,outfile)
|
25 |
+
sr_img = EvaluateModel(net,opt,img)
|
|
|
|
|
26 |
|
27 |
+
return sr_img
|
28 |
|
29 |
|
30 |
+
title = '<h1 style="text-align: center;">ML-SIM: Reconstruction of SIM images with deep learning</h1>'
|
31 |
|
32 |
description = """
|
33 |
## About
|
|
|
37 |
Upload a pet image and hit submit or select one from the given examples
|
38 |
"""
|
39 |
|
40 |
+
inputs = gr.inputs.Image(label="Upload a TIFF image", type = 'pil', optional=False)
|
41 |
outputs = [
|
42 |
+
gr.outputs.Image(label="SIM Reconstruction")
|
43 |
# , gr.outputs.Textbox(type="auto",label="Pet Prediction")
|
44 |
]
|
45 |
|
model/DIV2K_randomised_3x3_20200317.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4936f5ccf5db42009fa23ca3cbd63f53125dbd787240ca78f09e2b85c682a08
|
3 |
+
size 64467635
|
models.py
ADDED
@@ -0,0 +1,1997 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.init
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import functools # used by RRDBNet
|
8 |
+
|
9 |
+
|
10 |
+
def GetModel(opt):
|
11 |
+
if opt.model.lower() == 'edsr':
|
12 |
+
net = EDSR(opt)
|
13 |
+
elif opt.model.lower() == 'edsr2max':
|
14 |
+
net = EDSR2Max(normalization=opt.norm,nch_in=opt.nch_in,nch_out=opt.nch_out,scale=opt.scale)
|
15 |
+
elif opt.model.lower() == 'edsr3max':
|
16 |
+
net = EDSR3Max(normalization=opt.norm,nch_in=opt.nch_in,nch_out=opt.nch_out,scale=opt.scale)
|
17 |
+
elif opt.model.lower() == 'rcan':
|
18 |
+
net = RCAN(opt)
|
19 |
+
elif opt.model.lower() == 'rnan':
|
20 |
+
net = RNAN(opt)
|
21 |
+
elif opt.model.lower() == 'rrdb':
|
22 |
+
net = RRDBNet(opt)
|
23 |
+
elif opt.model.lower() == 'srresnet' or opt.model.lower() == 'srgan':
|
24 |
+
net = Generator(16, opt)
|
25 |
+
elif opt.model.lower() == 'unet':
|
26 |
+
net = UNet(opt.nch_in,opt.nch_out,opt)
|
27 |
+
elif opt.model.lower() == 'unet_n2n':
|
28 |
+
net = UNet_n2n(opt.nch_in,opt.nch_out,opt)
|
29 |
+
elif opt.model.lower() == 'unet60m':
|
30 |
+
net = UNet60M(opt.nch_in,opt.nch_out)
|
31 |
+
elif opt.model.lower() == 'unetrep':
|
32 |
+
net = UNetRep(opt.nch_in,opt.nch_out)
|
33 |
+
elif opt.model.lower() == 'unetgreedy':
|
34 |
+
net = UNetGreedy(opt.nch_in,opt.nch_out)
|
35 |
+
elif opt.model.lower() == 'mlpnet':
|
36 |
+
net = MLPNet()
|
37 |
+
elif opt.model.lower() == 'ffdnet':
|
38 |
+
net = FFDNet(opt.nch_in)
|
39 |
+
elif opt.model.lower() == 'dncnn':
|
40 |
+
net = DNCNN(opt.nch_in)
|
41 |
+
elif opt.model.lower() == 'fouriernet':
|
42 |
+
net = FourierNet()
|
43 |
+
elif opt.model.lower() == 'fourierconvnet':
|
44 |
+
net = FourierConvNet()
|
45 |
+
else:
|
46 |
+
print("model undefined")
|
47 |
+
return None
|
48 |
+
|
49 |
+
net.to(opt.device)
|
50 |
+
if opt.multigpu:
|
51 |
+
net = nn.DataParallel(net)
|
52 |
+
|
53 |
+
return net
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
class MeanShift(nn.Conv2d):
|
58 |
+
def __init__(
|
59 |
+
self, rgb_range,
|
60 |
+
rgb_mean, rgb_std, sign=-1):
|
61 |
+
|
62 |
+
super(MeanShift, self).__init__(3, 3, kernel_size=1)
|
63 |
+
std = torch.Tensor(rgb_std)
|
64 |
+
self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
|
65 |
+
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
|
66 |
+
self.requires_grad = False
|
67 |
+
|
68 |
+
|
69 |
+
def normalizationTransforms(normtype):
|
70 |
+
if normtype.lower() == 'div2k':
|
71 |
+
normalize = MeanShift(1, [0.4485, 0.4375, 0.4045], [0.2436, 0.2330, 0.2424])
|
72 |
+
unnormalize = MeanShift(1, [-1.8411, -1.8777, -1.6687], [4.1051, 4.2918, 4.1254])
|
73 |
+
print('using div2k normalization')
|
74 |
+
elif normtype.lower() == 'pcam':
|
75 |
+
normalize = MeanShift(1, [0.6975, 0.5348, 0.688], [0.2361, 0.2786, 0.2146])
|
76 |
+
unnormalize = MeanShift(1, [-2.9547, -1.9198, -3.20643], [4.2363, 3.58972, 4.66049])
|
77 |
+
print('using pcam normalization')
|
78 |
+
elif normtype.lower() == 'div2k_std1':
|
79 |
+
normalize = MeanShift(1, [0.4485, 0.4375, 0.4045], [1,1,1])
|
80 |
+
unnormalize = MeanShift(1, [-0.4485, -0.4375, -0.4045], [1,1,1])
|
81 |
+
print('using div2k normalization with std 1')
|
82 |
+
elif normtype.lower() == 'pcam_std1':
|
83 |
+
normalize = MeanShift(1, [0.6975, 0.5348, 0.688], [1,1,1])
|
84 |
+
unnormalize = MeanShift(1, [-0.6975, -0.5348, -0.688], [1,1,1])
|
85 |
+
print('using pcam normalization with std 1')
|
86 |
+
else:
|
87 |
+
print('not using normalization')
|
88 |
+
return None, None
|
89 |
+
return normalize, unnormalize
|
90 |
+
|
91 |
+
|
92 |
+
def conv(in_channels, out_channels, kernel_size, bias=True):
|
93 |
+
return nn.Conv2d(
|
94 |
+
in_channels, out_channels, kernel_size,
|
95 |
+
padding=(kernel_size//2), bias=bias)
|
96 |
+
|
97 |
+
class BasicBlock(nn.Sequential):
|
98 |
+
def __init__(
|
99 |
+
self, conv, in_channels, out_channels, kernel_size, stride=1, bias=False,
|
100 |
+
bn=True, act=nn.ReLU(True)):
|
101 |
+
|
102 |
+
m = [conv(in_channels, out_channels, kernel_size, bias=bias)]
|
103 |
+
if bn: m.append(nn.BatchNorm2d(out_channels))
|
104 |
+
if act is not None: m.append(act)
|
105 |
+
super(BasicBlock, self).__init__(*m)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
class ResBlock(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self, conv, n_feats, kernel_size,
|
112 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
113 |
+
|
114 |
+
super(ResBlock, self).__init__()
|
115 |
+
m = []
|
116 |
+
|
117 |
+
m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
|
118 |
+
m.append(nn.ReLU(True))
|
119 |
+
|
120 |
+
m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
|
121 |
+
|
122 |
+
self.body = nn.Sequential(*m)
|
123 |
+
self.res_scale = res_scale
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
res = self.body(x).mul(self.res_scale)
|
127 |
+
res += x
|
128 |
+
|
129 |
+
return res
|
130 |
+
|
131 |
+
|
132 |
+
class ResBlock2Max(nn.Module):
|
133 |
+
def __init__(
|
134 |
+
self, conv, n_feats, kernel_size,
|
135 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
136 |
+
|
137 |
+
super(ResBlock2Max, self).__init__()
|
138 |
+
m = []
|
139 |
+
|
140 |
+
m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
|
141 |
+
|
142 |
+
m.append(nn.MaxPool2d(2))
|
143 |
+
m.append(nn.ReLU(True))
|
144 |
+
|
145 |
+
m.append(conv(n_feats, 2*n_feats, kernel_size, bias=bias))
|
146 |
+
|
147 |
+
m.append(nn.MaxPool2d(2))
|
148 |
+
m.append(nn.ReLU(True))
|
149 |
+
|
150 |
+
m.append(conv(2*n_feats, 4*n_feats, kernel_size, bias=bias))
|
151 |
+
m.append(nn.ReLU(True))
|
152 |
+
|
153 |
+
m.append(nn.ConvTranspose2d(4*n_feats,2*n_feats,3,stride=2, padding=1, output_padding=1))
|
154 |
+
|
155 |
+
m.append(nn.ConvTranspose2d(2*n_feats,n_feats,3,stride=2, padding=1, output_padding=1))
|
156 |
+
|
157 |
+
self.body = nn.Sequential(*m)
|
158 |
+
self.res_scale = res_scale
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
res = self.body(x).mul(self.res_scale)
|
162 |
+
res += x
|
163 |
+
|
164 |
+
return res
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
class ResBlock3Max(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self, conv, n_feats, kernel_size,
|
172 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
173 |
+
|
174 |
+
super(ResBlock3Max, self).__init__()
|
175 |
+
m = []
|
176 |
+
|
177 |
+
m.append(conv(n_feats, 2*n_feats, kernel_size, bias=bias))
|
178 |
+
m.append(nn.MaxPool2d(2))
|
179 |
+
m.append(nn.ReLU(True))
|
180 |
+
|
181 |
+
m.append(conv(2*n_feats, 2*n_feats, kernel_size, bias=bias))
|
182 |
+
m.append(nn.MaxPool2d(2))
|
183 |
+
m.append(nn.ReLU(True))
|
184 |
+
|
185 |
+
m.append(conv(2*n_feats, 4*n_feats, kernel_size, bias=bias))
|
186 |
+
m.append(nn.MaxPool2d(2))
|
187 |
+
m.append(nn.ReLU(True))
|
188 |
+
|
189 |
+
m.append(conv(4*n_feats, 8*n_feats, kernel_size, bias=bias))
|
190 |
+
m.append(nn.ReLU(True))
|
191 |
+
|
192 |
+
m.append(nn.ConvTranspose2d(8*n_feats,4*n_feats,3,stride=2, padding=1, output_padding=1))
|
193 |
+
m.append(nn.ConvTranspose2d(4*n_feats,2*n_feats,3,stride=2, padding=1, output_padding=1))
|
194 |
+
m.append(nn.ConvTranspose2d(2*n_feats,n_feats,3,stride=2, padding=1, output_padding=1))
|
195 |
+
|
196 |
+
self.body = nn.Sequential(*m)
|
197 |
+
self.res_scale = res_scale
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
res = self.body(x).mul(self.res_scale)
|
201 |
+
res += x
|
202 |
+
|
203 |
+
return res
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
class Upsampler(nn.Sequential):
|
208 |
+
def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):
|
209 |
+
|
210 |
+
m = []
|
211 |
+
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
|
212 |
+
for _ in range(int(math.log(scale, 2))):
|
213 |
+
m.append(conv(n_feats, 4 * n_feats, 3, bias))
|
214 |
+
m.append(nn.PixelShuffle(2))
|
215 |
+
if bn: m.append(nn.BatchNorm2d(n_feats))
|
216 |
+
|
217 |
+
if act == 'relu':
|
218 |
+
m.append(nn.ReLU(True))
|
219 |
+
elif act == 'prelu':
|
220 |
+
m.append(nn.PReLU(n_feats))
|
221 |
+
|
222 |
+
elif scale == 3:
|
223 |
+
m.append(conv(n_feats, 9 * n_feats, 3, bias))
|
224 |
+
m.append(nn.PixelShuffle(3))
|
225 |
+
if bn: m.append(nn.BatchNorm2d(n_feats))
|
226 |
+
|
227 |
+
if act == 'relu':
|
228 |
+
m.append(nn.ReLU(True))
|
229 |
+
elif act == 'prelu':
|
230 |
+
m.append(nn.PReLU(n_feats))
|
231 |
+
else:
|
232 |
+
raise NotImplementedError
|
233 |
+
|
234 |
+
super(Upsampler, self).__init__(*m)
|
235 |
+
|
236 |
+
|
237 |
+
class EDSR(nn.Module):
|
238 |
+
def __init__(self,opt):
|
239 |
+
super(EDSR, self).__init__()
|
240 |
+
|
241 |
+
n_resblocks = 16
|
242 |
+
n_feats = 64
|
243 |
+
kernel_size = 3
|
244 |
+
act = nn.ReLU(True)
|
245 |
+
|
246 |
+
if not opt.norm == None:
|
247 |
+
self.normalize, self.unnormalize = normalizationTransforms(opt.norm)
|
248 |
+
else:
|
249 |
+
self.normalize, self.unnormalize = None, None
|
250 |
+
|
251 |
+
|
252 |
+
# define head module
|
253 |
+
m_head = [conv(opt.nch_in, n_feats, kernel_size)]
|
254 |
+
|
255 |
+
# define body module
|
256 |
+
m_body = [
|
257 |
+
ResBlock(
|
258 |
+
conv, n_feats, kernel_size, act=act, res_scale=0.1
|
259 |
+
) for _ in range(n_resblocks)
|
260 |
+
]
|
261 |
+
m_body.append(conv(n_feats, n_feats, kernel_size))
|
262 |
+
|
263 |
+
# define tail module
|
264 |
+
if opt.scale == 1:
|
265 |
+
if opt.task == 'segment':
|
266 |
+
m_tail = [nn.Conv2d(n_feats, 2, 1)]
|
267 |
+
else:
|
268 |
+
m_tail = [conv(n_feats, opt.nch_out, kernel_size)]
|
269 |
+
else:
|
270 |
+
m_tail = [
|
271 |
+
Upsampler(conv, opt.scale, n_feats, act=False),
|
272 |
+
conv(n_feats, opt.nch_out, kernel_size)]
|
273 |
+
|
274 |
+
self.head = nn.Sequential(*m_head)
|
275 |
+
self.body = nn.Sequential(*m_body)
|
276 |
+
self.tail = nn.Sequential(*m_tail)
|
277 |
+
|
278 |
+
def forward(self, x):
|
279 |
+
|
280 |
+
if not self.normalize == None:
|
281 |
+
x = self.normalize(x)
|
282 |
+
|
283 |
+
x = self.head(x)
|
284 |
+
|
285 |
+
res = self.body(x)
|
286 |
+
res += x
|
287 |
+
|
288 |
+
x = self.tail(res)
|
289 |
+
|
290 |
+
if not self.unnormalize == None:
|
291 |
+
x = self.unnormalize(x)
|
292 |
+
|
293 |
+
return x
|
294 |
+
|
295 |
+
|
296 |
+
class EDSR2Max(nn.Module):
|
297 |
+
def __init__(self, normalization=None,nch_in=3,nch_out=3,scale=4):
|
298 |
+
super(EDSR2Max, self).__init__()
|
299 |
+
|
300 |
+
n_resblocks = 16
|
301 |
+
n_feats = 64
|
302 |
+
kernel_size = 3
|
303 |
+
act = nn.ReLU(True)
|
304 |
+
|
305 |
+
if not opt.norm == None:
|
306 |
+
self.normalize, self.unnormalize = normalizationTransforms(normalization)
|
307 |
+
else:
|
308 |
+
self.normalize, self.unnormalize = None, None
|
309 |
+
|
310 |
+
|
311 |
+
# define head module
|
312 |
+
m_head = [conv(nch_in, n_feats, kernel_size)]
|
313 |
+
|
314 |
+
# define body module
|
315 |
+
m_body = [
|
316 |
+
ResBlock2Max(
|
317 |
+
conv, n_feats, kernel_size, act=act, res_scale=0.1
|
318 |
+
) for _ in range(n_resblocks)
|
319 |
+
]
|
320 |
+
m_body.append(conv(n_feats, n_feats, kernel_size))
|
321 |
+
|
322 |
+
# define tail module
|
323 |
+
m_tail = [
|
324 |
+
conv(n_feats, nch_out, kernel_size)
|
325 |
+
]
|
326 |
+
|
327 |
+
self.head = nn.Sequential(*m_head)
|
328 |
+
self.body = nn.Sequential(*m_body)
|
329 |
+
self.tail = nn.Sequential(*m_tail)
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
|
333 |
+
if not self.normalize == None:
|
334 |
+
x = self.normalize(x)
|
335 |
+
|
336 |
+
x = self.head(x)
|
337 |
+
|
338 |
+
res = self.body(x)
|
339 |
+
res += x
|
340 |
+
|
341 |
+
x = self.tail(res)
|
342 |
+
|
343 |
+
if not self.unnormalize == None:
|
344 |
+
x = self.unnormalize(x)
|
345 |
+
|
346 |
+
return x
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
class EDSR3Max(nn.Module):
|
352 |
+
def __init__(self, normalization=None,nch_in=3,nch_out=3,scale=4):
|
353 |
+
super(EDSR3Max, self).__init__()
|
354 |
+
|
355 |
+
n_resblocks = 16
|
356 |
+
n_feats = 64
|
357 |
+
kernel_size = 3
|
358 |
+
act = nn.ReLU(True)
|
359 |
+
|
360 |
+
if not opt.norm == None:
|
361 |
+
self.normalize, self.unnormalize = normalizationTransforms(normalization)
|
362 |
+
else:
|
363 |
+
self.normalize, self.unnormalize = None, None
|
364 |
+
|
365 |
+
|
366 |
+
# define head module
|
367 |
+
m_head = [conv(nch_in, n_feats, kernel_size)]
|
368 |
+
|
369 |
+
# define body module
|
370 |
+
m_body = [
|
371 |
+
ResBlock3Max(
|
372 |
+
conv, n_feats, kernel_size, act=act, res_scale=0.1
|
373 |
+
) for _ in range(n_resblocks)
|
374 |
+
]
|
375 |
+
m_body.append(conv(n_feats, n_feats, kernel_size))
|
376 |
+
|
377 |
+
# define tail module
|
378 |
+
m_tail = [
|
379 |
+
conv(n_feats, nch_out, kernel_size)
|
380 |
+
]
|
381 |
+
|
382 |
+
self.head = nn.Sequential(*m_head)
|
383 |
+
self.body = nn.Sequential(*m_body)
|
384 |
+
self.tail = nn.Sequential(*m_tail)
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
|
388 |
+
if not self.normalize == None:
|
389 |
+
x = self.normalize(x)
|
390 |
+
|
391 |
+
x = self.head(x)
|
392 |
+
|
393 |
+
res = self.body(x)
|
394 |
+
res += x
|
395 |
+
|
396 |
+
x = self.tail(res)
|
397 |
+
|
398 |
+
if not self.unnormalize == None:
|
399 |
+
x = self.unnormalize(x)
|
400 |
+
|
401 |
+
return x
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
# ----------------------------------- RCAN ------------------------------------------
|
406 |
+
|
407 |
+
## Channel Attention (CA) Layer
|
408 |
+
class CALayer(nn.Module):
|
409 |
+
def __init__(self, channel, reduction=16):
|
410 |
+
super(CALayer, self).__init__()
|
411 |
+
# global average pooling: feature --> point
|
412 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
413 |
+
# feature channel downscale and upscale --> channel weight
|
414 |
+
self.conv_du = nn.Sequential(
|
415 |
+
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
|
416 |
+
nn.ReLU(inplace=True),
|
417 |
+
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
|
418 |
+
nn.Sigmoid()
|
419 |
+
)
|
420 |
+
|
421 |
+
def forward(self, x):
|
422 |
+
y = self.avg_pool(x)
|
423 |
+
y = self.conv_du(y)
|
424 |
+
return x * y
|
425 |
+
|
426 |
+
## Residual Channel Attention Block (RCAB)
|
427 |
+
class RCAB(nn.Module):
|
428 |
+
def __init__(
|
429 |
+
self, conv, n_feat, kernel_size, reduction,
|
430 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
431 |
+
|
432 |
+
super(RCAB, self).__init__()
|
433 |
+
modules_body = []
|
434 |
+
for i in range(2):
|
435 |
+
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
|
436 |
+
if bn: modules_body.append(nn.BatchNorm2d(n_feat))
|
437 |
+
if i == 0: modules_body.append(act)
|
438 |
+
modules_body.append(CALayer(n_feat, reduction))
|
439 |
+
self.body = nn.Sequential(*modules_body)
|
440 |
+
self.res_scale = res_scale
|
441 |
+
|
442 |
+
def forward(self, x):
|
443 |
+
res = self.body(x)
|
444 |
+
#res = self.body(x).mul(self.res_scale)
|
445 |
+
res += x
|
446 |
+
return res
|
447 |
+
|
448 |
+
## Residual Group (RG)
|
449 |
+
class ResidualGroup(nn.Module):
|
450 |
+
def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks):
|
451 |
+
super(ResidualGroup, self).__init__()
|
452 |
+
modules_body = []
|
453 |
+
modules_body = [
|
454 |
+
RCAB(
|
455 |
+
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(True), res_scale=1) \
|
456 |
+
for _ in range(n_resblocks)]
|
457 |
+
modules_body.append(conv(n_feat, n_feat, kernel_size))
|
458 |
+
self.body = nn.Sequential(*modules_body)
|
459 |
+
|
460 |
+
def forward(self, x):
|
461 |
+
res = self.body(x)
|
462 |
+
res += x
|
463 |
+
return res
|
464 |
+
|
465 |
+
## Residual Channel Attention Network (RCAN)
|
466 |
+
class RCAN(nn.Module):
|
467 |
+
def __init__(self, opt):
|
468 |
+
super(RCAN, self).__init__()
|
469 |
+
|
470 |
+
n_resgroups = opt.n_resgroups
|
471 |
+
n_resblocks = opt.n_resblocks
|
472 |
+
n_feats = opt.n_feats
|
473 |
+
kernel_size = 3
|
474 |
+
reduction = opt.reduction
|
475 |
+
act = nn.ReLU(True)
|
476 |
+
self.narch = opt.narch
|
477 |
+
|
478 |
+
if not opt.norm == None:
|
479 |
+
self.normalize, self.unnormalize = normalizationTransforms(opt.norm)
|
480 |
+
else:
|
481 |
+
self.normalize, self.unnormalize = None, None
|
482 |
+
|
483 |
+
|
484 |
+
# define head module
|
485 |
+
if self.narch == 0:
|
486 |
+
modules_head = [conv(opt.nch_in, n_feats, kernel_size)]
|
487 |
+
self.head = nn.Sequential(*modules_head)
|
488 |
+
else:
|
489 |
+
self.head0 = conv(1, n_feats, kernel_size)
|
490 |
+
self.head1 = conv(1, n_feats, kernel_size)
|
491 |
+
self.head2 = conv(1, n_feats, kernel_size)
|
492 |
+
self.head3 = conv(1, n_feats, kernel_size)
|
493 |
+
self.head4 = conv(1, n_feats, kernel_size)
|
494 |
+
self.head5 = conv(1, n_feats, kernel_size)
|
495 |
+
self.head6 = conv(1, n_feats, kernel_size)
|
496 |
+
self.head7 = conv(1, n_feats, kernel_size)
|
497 |
+
self.head8 = conv(1, n_feats, kernel_size)
|
498 |
+
self.combineHead = conv(9*n_feats, n_feats, kernel_size)
|
499 |
+
|
500 |
+
|
501 |
+
|
502 |
+
# define body module
|
503 |
+
modules_body = [
|
504 |
+
ResidualGroup(
|
505 |
+
conv, n_feats, kernel_size, reduction, act=act, res_scale=1, n_resblocks=n_resblocks) \
|
506 |
+
for _ in range(n_resgroups)]
|
507 |
+
|
508 |
+
modules_body.append(conv(n_feats, n_feats, kernel_size))
|
509 |
+
|
510 |
+
# define tail module
|
511 |
+
if opt.scale == 1:
|
512 |
+
if opt.task == 'segment':
|
513 |
+
modules_tail = [nn.Conv2d(n_feats, opt.nch_out, 1)]
|
514 |
+
else:
|
515 |
+
modules_tail = [conv(n_feats, opt.nch_out, kernel_size)]
|
516 |
+
else:
|
517 |
+
modules_tail = [
|
518 |
+
Upsampler(conv, opt.scale, n_feats, act=False),
|
519 |
+
conv(n_feats, opt.nch_out, kernel_size)]
|
520 |
+
|
521 |
+
self.body = nn.Sequential(*modules_body)
|
522 |
+
self.tail = nn.Sequential(*modules_tail)
|
523 |
+
|
524 |
+
def forward(self, x):
|
525 |
+
|
526 |
+
if not self.normalize == None:
|
527 |
+
x = self.normalize(x)
|
528 |
+
|
529 |
+
if self.narch == 0:
|
530 |
+
x = self.head(x)
|
531 |
+
else:
|
532 |
+
x0 = self.head0(x[:,0:0+1,:,:])
|
533 |
+
x1 = self.head1(x[:,1:1+1,:,:])
|
534 |
+
x2 = self.head2(x[:,2:2+1,:,:])
|
535 |
+
x3 = self.head3(x[:,3:3+1,:,:])
|
536 |
+
x4 = self.head4(x[:,4:4+1,:,:])
|
537 |
+
x5 = self.head5(x[:,5:5+1,:,:])
|
538 |
+
x6 = self.head6(x[:,6:6+1,:,:])
|
539 |
+
x7 = self.head7(x[:,7:7+1,:,:])
|
540 |
+
x8 = self.head8(x[:,8:8+1,:,:])
|
541 |
+
x = torch.cat((x0,x1,x2,x3,x4,x5,x6,x7,x8), 1)
|
542 |
+
x = self.combineHead(x)
|
543 |
+
|
544 |
+
res = self.body(x)
|
545 |
+
res += x
|
546 |
+
|
547 |
+
x = self.tail(res)
|
548 |
+
|
549 |
+
if not self.unnormalize == None:
|
550 |
+
x = self.unnormalize(x)
|
551 |
+
|
552 |
+
return x
|
553 |
+
|
554 |
+
|
555 |
+
|
556 |
+
|
557 |
+
|
558 |
+
# ----------------------------------- RNAN ------------------------------------------
|
559 |
+
|
560 |
+
|
561 |
+
# add NonLocalBlock2D
|
562 |
+
# reference: https://github.com/AlexHex7/Non-local_pytorch/blob/master/lib/non_local_simple_version.py
|
563 |
+
class NonLocalBlock2D(nn.Module):
|
564 |
+
def __init__(self, in_channels, inter_channels):
|
565 |
+
super(NonLocalBlock2D, self).__init__()
|
566 |
+
|
567 |
+
self.in_channels = in_channels
|
568 |
+
self.inter_channels = inter_channels
|
569 |
+
|
570 |
+
self.g = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0)
|
571 |
+
|
572 |
+
self.W = nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0)
|
573 |
+
# for pytorch 0.3.1
|
574 |
+
#nn.init.constant(self.W.weight, 0)
|
575 |
+
#nn.init.constant(self.W.bias, 0)
|
576 |
+
# for pytorch 0.4.0
|
577 |
+
nn.init.constant_(self.W.weight, 0)
|
578 |
+
nn.init.constant_(self.W.bias, 0)
|
579 |
+
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0)
|
580 |
+
|
581 |
+
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0)
|
582 |
+
|
583 |
+
def forward(self, x):
|
584 |
+
|
585 |
+
batch_size = x.size(0)
|
586 |
+
|
587 |
+
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
|
588 |
+
|
589 |
+
g_x = g_x.permute(0,2,1)
|
590 |
+
|
591 |
+
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
|
592 |
+
|
593 |
+
theta_x = theta_x.permute(0,2,1)
|
594 |
+
|
595 |
+
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
|
596 |
+
|
597 |
+
f = torch.matmul(theta_x, phi_x)
|
598 |
+
|
599 |
+
f_div_C = F.softmax(f, dim=1)
|
600 |
+
|
601 |
+
|
602 |
+
y = torch.matmul(f_div_C, g_x)
|
603 |
+
|
604 |
+
y = y.permute(0,2,1).contiguous()
|
605 |
+
|
606 |
+
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
|
607 |
+
W_y = self.W(y)
|
608 |
+
z = W_y + x
|
609 |
+
|
610 |
+
return z
|
611 |
+
|
612 |
+
|
613 |
+
## define trunk branch
|
614 |
+
class TrunkBranch(nn.Module):
|
615 |
+
def __init__(
|
616 |
+
self, conv, n_feat, kernel_size,
|
617 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
618 |
+
|
619 |
+
super(TrunkBranch, self).__init__()
|
620 |
+
modules_body = []
|
621 |
+
for i in range(2):
|
622 |
+
modules_body.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
623 |
+
self.body = nn.Sequential(*modules_body)
|
624 |
+
|
625 |
+
def forward(self, x):
|
626 |
+
tx = self.body(x)
|
627 |
+
|
628 |
+
return tx
|
629 |
+
|
630 |
+
|
631 |
+
|
632 |
+
## define mask branch
|
633 |
+
class MaskBranchDownUp(nn.Module):
|
634 |
+
def __init__(
|
635 |
+
self, conv, n_feat, kernel_size,
|
636 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
637 |
+
|
638 |
+
super(MaskBranchDownUp, self).__init__()
|
639 |
+
|
640 |
+
MB_RB1 = []
|
641 |
+
MB_RB1.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
642 |
+
|
643 |
+
MB_Down = []
|
644 |
+
MB_Down.append(nn.Conv2d(n_feat,n_feat, 3, stride=2, padding=1))
|
645 |
+
|
646 |
+
MB_RB2 = []
|
647 |
+
for i in range(2):
|
648 |
+
MB_RB2.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
649 |
+
|
650 |
+
MB_Up = []
|
651 |
+
MB_Up.append(nn.ConvTranspose2d(n_feat,n_feat, 6, stride=2, padding=2))
|
652 |
+
|
653 |
+
MB_RB3 = []
|
654 |
+
MB_RB3.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
655 |
+
|
656 |
+
MB_1x1conv = []
|
657 |
+
MB_1x1conv.append(nn.Conv2d(n_feat,n_feat, 1, padding=0, bias=True))
|
658 |
+
|
659 |
+
MB_sigmoid = []
|
660 |
+
MB_sigmoid.append(nn.Sigmoid())
|
661 |
+
|
662 |
+
self.MB_RB1 = nn.Sequential(*MB_RB1)
|
663 |
+
self.MB_Down = nn.Sequential(*MB_Down)
|
664 |
+
self.MB_RB2 = nn.Sequential(*MB_RB2)
|
665 |
+
self.MB_Up = nn.Sequential(*MB_Up)
|
666 |
+
self.MB_RB3 = nn.Sequential(*MB_RB3)
|
667 |
+
self.MB_1x1conv = nn.Sequential(*MB_1x1conv)
|
668 |
+
self.MB_sigmoid = nn.Sequential(*MB_sigmoid)
|
669 |
+
|
670 |
+
def forward(self, x):
|
671 |
+
x_RB1 = self.MB_RB1(x)
|
672 |
+
x_Down = self.MB_Down(x_RB1)
|
673 |
+
x_RB2 = self.MB_RB2(x_Down)
|
674 |
+
x_Up = self.MB_Up(x_RB2)
|
675 |
+
x_preRB3 = x_RB1 + x_Up
|
676 |
+
x_RB3 = self.MB_RB3(x_preRB3)
|
677 |
+
x_1x1 = self.MB_1x1conv(x_RB3)
|
678 |
+
mx = self.MB_sigmoid(x_1x1)
|
679 |
+
|
680 |
+
return mx
|
681 |
+
|
682 |
+
## define nonlocal mask branch
|
683 |
+
class NLMaskBranchDownUp(nn.Module):
|
684 |
+
def __init__(
|
685 |
+
self, conv, n_feat, kernel_size,
|
686 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
687 |
+
|
688 |
+
super(NLMaskBranchDownUp, self).__init__()
|
689 |
+
|
690 |
+
MB_RB1 = []
|
691 |
+
MB_RB1.append(NonLocalBlock2D(n_feat, n_feat // 2))
|
692 |
+
MB_RB1.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
693 |
+
|
694 |
+
MB_Down = []
|
695 |
+
MB_Down.append(nn.Conv2d(n_feat,n_feat, 3, stride=2, padding=1))
|
696 |
+
|
697 |
+
MB_RB2 = []
|
698 |
+
for i in range(2):
|
699 |
+
MB_RB2.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
700 |
+
|
701 |
+
MB_Up = []
|
702 |
+
MB_Up.append(nn.ConvTranspose2d(n_feat,n_feat, 6, stride=2, padding=2))
|
703 |
+
|
704 |
+
MB_RB3 = []
|
705 |
+
MB_RB3.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
706 |
+
|
707 |
+
MB_1x1conv = []
|
708 |
+
MB_1x1conv.append(nn.Conv2d(n_feat,n_feat, 1, padding=0, bias=True))
|
709 |
+
|
710 |
+
MB_sigmoid = []
|
711 |
+
MB_sigmoid.append(nn.Sigmoid())
|
712 |
+
|
713 |
+
self.MB_RB1 = nn.Sequential(*MB_RB1)
|
714 |
+
self.MB_Down = nn.Sequential(*MB_Down)
|
715 |
+
self.MB_RB2 = nn.Sequential(*MB_RB2)
|
716 |
+
self.MB_Up = nn.Sequential(*MB_Up)
|
717 |
+
self.MB_RB3 = nn.Sequential(*MB_RB3)
|
718 |
+
self.MB_1x1conv = nn.Sequential(*MB_1x1conv)
|
719 |
+
self.MB_sigmoid = nn.Sequential(*MB_sigmoid)
|
720 |
+
|
721 |
+
def forward(self, x):
|
722 |
+
x_RB1 = self.MB_RB1(x)
|
723 |
+
x_Down = self.MB_Down(x_RB1)
|
724 |
+
x_RB2 = self.MB_RB2(x_Down)
|
725 |
+
x_Up = self.MB_Up(x_RB2)
|
726 |
+
x_preRB3 = x_RB1 + x_Up
|
727 |
+
x_RB3 = self.MB_RB3(x_preRB3)
|
728 |
+
x_1x1 = self.MB_1x1conv(x_RB3)
|
729 |
+
mx = self.MB_sigmoid(x_1x1)
|
730 |
+
|
731 |
+
return mx
|
732 |
+
|
733 |
+
|
734 |
+
|
735 |
+
|
736 |
+
## define residual attention module
|
737 |
+
class ResAttModuleDownUpPlus(nn.Module):
|
738 |
+
def __init__(
|
739 |
+
self, conv, n_feat, kernel_size,
|
740 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
741 |
+
super(ResAttModuleDownUpPlus, self).__init__()
|
742 |
+
RA_RB1 = []
|
743 |
+
RA_RB1.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
744 |
+
RA_TB = []
|
745 |
+
RA_TB.append(TrunkBranch(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
746 |
+
RA_MB = []
|
747 |
+
RA_MB.append(MaskBranchDownUp(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
748 |
+
RA_tail = []
|
749 |
+
for i in range(2):
|
750 |
+
RA_tail.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
751 |
+
|
752 |
+
self.RA_RB1 = nn.Sequential(*RA_RB1)
|
753 |
+
self.RA_TB = nn.Sequential(*RA_TB)
|
754 |
+
self.RA_MB = nn.Sequential(*RA_MB)
|
755 |
+
self.RA_tail = nn.Sequential(*RA_tail)
|
756 |
+
|
757 |
+
def forward(self, input):
|
758 |
+
RA_RB1_x = self.RA_RB1(input)
|
759 |
+
tx = self.RA_TB(RA_RB1_x)
|
760 |
+
mx = self.RA_MB(RA_RB1_x)
|
761 |
+
txmx = tx * mx
|
762 |
+
hx = txmx + RA_RB1_x
|
763 |
+
hx = self.RA_tail(hx)
|
764 |
+
|
765 |
+
return hx
|
766 |
+
|
767 |
+
|
768 |
+
## define nonlocal residual attention module
|
769 |
+
class NLResAttModuleDownUpPlus(nn.Module):
|
770 |
+
def __init__(
|
771 |
+
self, conv, n_feat, kernel_size,
|
772 |
+
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
773 |
+
super(NLResAttModuleDownUpPlus, self).__init__()
|
774 |
+
RA_RB1 = []
|
775 |
+
RA_RB1.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
776 |
+
RA_TB = []
|
777 |
+
RA_TB.append(TrunkBranch(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
778 |
+
RA_MB = []
|
779 |
+
RA_MB.append(NLMaskBranchDownUp(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
780 |
+
RA_tail = []
|
781 |
+
for i in range(2):
|
782 |
+
RA_tail.append(ResBlock(conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
783 |
+
|
784 |
+
self.RA_RB1 = nn.Sequential(*RA_RB1)
|
785 |
+
self.RA_TB = nn.Sequential(*RA_TB)
|
786 |
+
self.RA_MB = nn.Sequential(*RA_MB)
|
787 |
+
self.RA_tail = nn.Sequential(*RA_tail)
|
788 |
+
|
789 |
+
def forward(self, input):
|
790 |
+
RA_RB1_x = self.RA_RB1(input)
|
791 |
+
tx = self.RA_TB(RA_RB1_x)
|
792 |
+
mx = self.RA_MB(RA_RB1_x)
|
793 |
+
txmx = tx * mx
|
794 |
+
hx = txmx + RA_RB1_x
|
795 |
+
hx = self.RA_tail(hx)
|
796 |
+
|
797 |
+
return hx
|
798 |
+
|
799 |
+
|
800 |
+
class _ResGroup(nn.Module):
|
801 |
+
def __init__(self, conv, n_feats, kernel_size, act, res_scale):
|
802 |
+
super(_ResGroup, self).__init__()
|
803 |
+
modules_body = []
|
804 |
+
modules_body.append(ResAttModuleDownUpPlus(conv, n_feats, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
805 |
+
modules_body.append(conv(n_feats, n_feats, kernel_size))
|
806 |
+
self.body = nn.Sequential(*modules_body)
|
807 |
+
|
808 |
+
def forward(self, x):
|
809 |
+
res = self.body(x)
|
810 |
+
return res
|
811 |
+
|
812 |
+
class _NLResGroup(nn.Module):
|
813 |
+
def __init__(self, conv, n_feats, kernel_size, act, res_scale):
|
814 |
+
super(_NLResGroup, self).__init__()
|
815 |
+
modules_body = []
|
816 |
+
modules_body.append(NLResAttModuleDownUpPlus(conv, n_feats, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1))
|
817 |
+
modules_body.append(conv(n_feats, n_feats, kernel_size))
|
818 |
+
self.body = nn.Sequential(*modules_body)
|
819 |
+
|
820 |
+
def forward(self, x):
|
821 |
+
res = self.body(x)
|
822 |
+
return res
|
823 |
+
|
824 |
+
class RNAN(nn.Module):
|
825 |
+
def __init__(self, opt):
|
826 |
+
super(RNAN, self).__init__()
|
827 |
+
|
828 |
+
n_resgroups = opt.n_resgroups
|
829 |
+
n_feats = opt.n_feats
|
830 |
+
kernel_size = 3
|
831 |
+
reduction = opt.reduction
|
832 |
+
act = nn.ReLU(True)
|
833 |
+
|
834 |
+
|
835 |
+
print(n_resgroup2,n_resblock,n_feats,kernel_size,reduction,act)
|
836 |
+
|
837 |
+
# RGB mean for DIV2K 1-800
|
838 |
+
# rgb_mean = (0.4488, 0.4371, 0.4040)
|
839 |
+
# rgb_std = (1.0, 1.0, 1.0)
|
840 |
+
# self.sub_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std)
|
841 |
+
|
842 |
+
# define head module
|
843 |
+
modules_head = [conv(opt.nch_in, n_feats, kernel_size)]
|
844 |
+
|
845 |
+
# define body module
|
846 |
+
modules_body_nl_low = [
|
847 |
+
_NLResGroup(
|
848 |
+
conv, n_feats, kernel_size, act=act, res_scale=1)]
|
849 |
+
modules_body = [
|
850 |
+
_ResGroup(
|
851 |
+
conv, n_feats, kernel_size, act=act, res_scale=1) \
|
852 |
+
for _ in range(n_resgroups - 2)]
|
853 |
+
modules_body_nl_high = [
|
854 |
+
_NLResGroup(
|
855 |
+
conv, n_feats, kernel_size, act=act, res_scale=1)]
|
856 |
+
modules_body.append(conv(n_feats, n_feats, kernel_size))
|
857 |
+
|
858 |
+
# define tail module
|
859 |
+
modules_tail = [
|
860 |
+
Upsampler(conv, opt.scale, n_feats, act=False),
|
861 |
+
conv(n_feats, opt.nch_out, kernel_size)]
|
862 |
+
|
863 |
+
# self.add_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
|
864 |
+
|
865 |
+
self.head = nn.Sequential(*modules_head)
|
866 |
+
self.body_nl_low = nn.Sequential(*modules_body_nl_low)
|
867 |
+
self.body = nn.Sequential(*modules_body)
|
868 |
+
self.body_nl_high = nn.Sequential(*modules_body_nl_high)
|
869 |
+
self.tail = nn.Sequential(*modules_tail)
|
870 |
+
|
871 |
+
def forward(self, x):
|
872 |
+
|
873 |
+
# x = self.sub_mean(x)
|
874 |
+
feats_shallow = self.head(x)
|
875 |
+
|
876 |
+
res = self.body_nl_low(feats_shallow)
|
877 |
+
res = self.body(res)
|
878 |
+
res = self.body_nl_high(res)
|
879 |
+
res += feats_shallow
|
880 |
+
|
881 |
+
res_main = self.tail(res)
|
882 |
+
|
883 |
+
# res_main = self.add_mean(res_main)
|
884 |
+
|
885 |
+
return res_main
|
886 |
+
|
887 |
+
|
888 |
+
|
889 |
+
|
890 |
+
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
|
895 |
+
|
896 |
+
|
897 |
+
|
898 |
+
class FourierNet(nn.Module):
|
899 |
+
|
900 |
+
def __init__(self):
|
901 |
+
super(FourierNet, self).__init__()
|
902 |
+
self.inp = nn.Linear(85*85*9,85*85)
|
903 |
+
|
904 |
+
|
905 |
+
def forward(self, x):
|
906 |
+
x = x.view(-1,85*85*9)
|
907 |
+
x = (self.inp(x))
|
908 |
+
# x = (self.lay1(x))
|
909 |
+
x = x.view(-1,1,85,85)
|
910 |
+
return x
|
911 |
+
|
912 |
+
|
913 |
+
class FourierConvNet(nn.Module):
|
914 |
+
|
915 |
+
def __init__(self):
|
916 |
+
super(FourierConvNet, self).__init__()
|
917 |
+
|
918 |
+
|
919 |
+
# self.inp = nn.Conv2d(18,32,3, stride=1, padding=1)
|
920 |
+
# self.lay1 = nn.Conv2d(32,32,3, stride=1, padding=1)
|
921 |
+
# self.lay2 = nn.Conv2d(32,32,3, stride=1, padding=1)
|
922 |
+
# self.lay3 = nn.Conv2d(32,32,3, stride=1, padding=1)
|
923 |
+
|
924 |
+
# self.pool = nn.MaxPool2d(2,2)
|
925 |
+
# self.out = nn.Conv2d(32,1,3, stride=1, padding=1)
|
926 |
+
|
927 |
+
# self.labels = nn.Linear(4096,18)
|
928 |
+
|
929 |
+
self.inc = inconv(18, 64)
|
930 |
+
self.down1 = down(64, 128)
|
931 |
+
self.down2 = down(128, 256)
|
932 |
+
self.down3 = down(256, 512)
|
933 |
+
self.down4 = down(512, 512)
|
934 |
+
self.up1 = up(1024, 256)
|
935 |
+
self.up2 = up(512, 128)
|
936 |
+
self.up3 = up(256, 64)
|
937 |
+
self.up4 = up(128, 64)
|
938 |
+
self.outc = outconv(64, 9) # two channels for complex
|
939 |
+
|
940 |
+
|
941 |
+
def forward(self, x):
|
942 |
+
# x = self.inp(x)
|
943 |
+
|
944 |
+
# x = torch.rfft(x,2,onesided=False)
|
945 |
+
# # x = torch.log( torch.abs(x) + 1 )
|
946 |
+
|
947 |
+
# x = x.permute(0,1,4,2,3) # put real and imag parts after stack index
|
948 |
+
# x = x.contiguous().view(-1,18,256,256)
|
949 |
+
|
950 |
+
# x = F.relu(self.inp(x))
|
951 |
+
|
952 |
+
# x = self.pool(x) # to 128
|
953 |
+
# x = F.relu(self.lay2(x))
|
954 |
+
# x = self.pool(x) # to 64
|
955 |
+
# x = F.relu(self.lay3(x))
|
956 |
+
|
957 |
+
# x = self.out(x)
|
958 |
+
|
959 |
+
# x = x.view(-1,4096)
|
960 |
+
|
961 |
+
# x = self.labels(x)
|
962 |
+
|
963 |
+
x1 = self.inc(x)
|
964 |
+
x2 = self.down1(x1)
|
965 |
+
x3 = self.down2(x2)
|
966 |
+
x4 = self.down3(x3)
|
967 |
+
x5 = self.down4(x4)
|
968 |
+
x = self.up1(x5, x4)
|
969 |
+
x = self.up2(x, x3)
|
970 |
+
x = self.up3(x, x2)
|
971 |
+
x = self.up4(x, x1)
|
972 |
+
x = self.outc(x)
|
973 |
+
|
974 |
+
x = torch.log(torch.abs(x))
|
975 |
+
|
976 |
+
# x = x.permute(0,2,3,1)
|
977 |
+
# x = torch.irfft(x,2,onesided=False)
|
978 |
+
return x
|
979 |
+
|
980 |
+
|
981 |
+
# super(UNet, self).__init__()
|
982 |
+
# self.inc = inconv(n_channels, 64)
|
983 |
+
# self.down1 = down(64, 128)
|
984 |
+
# self.down2 = down(128, 256)
|
985 |
+
# self.down3 = down(256, 512)
|
986 |
+
# self.down4 = down(512, 512)
|
987 |
+
# self.up1 = up(1024, 256)
|
988 |
+
# self.up2 = up(512, 128)
|
989 |
+
# self.up3 = up(256, 64)
|
990 |
+
# self.up4 = up(128, 64)
|
991 |
+
|
992 |
+
# if opt.task == 'segment':
|
993 |
+
# self.outc = outconv(64, 2)
|
994 |
+
# else:
|
995 |
+
# self.outc = outconv(64, n_classes)
|
996 |
+
|
997 |
+
# # Initialize weights
|
998 |
+
# # self._init_weights()
|
999 |
+
|
1000 |
+
|
1001 |
+
# def _init_weights(self):
|
1002 |
+
# """Initializes weights using He et al. (2015)."""
|
1003 |
+
|
1004 |
+
# for m in self.modules():
|
1005 |
+
# if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
|
1006 |
+
# nn.init.kaiming_normal_(m.weight.data)
|
1007 |
+
# m.bias.data.zero_()
|
1008 |
+
|
1009 |
+
|
1010 |
+
# def forward(self, x):
|
1011 |
+
# x1 = self.inc(x)
|
1012 |
+
# x2 = self.down1(x1)
|
1013 |
+
# x3 = self.down2(x2)
|
1014 |
+
# x4 = self.down3(x3)
|
1015 |
+
# x5 = self.down4(x4)
|
1016 |
+
# x = self.up1(x5, x4)
|
1017 |
+
# x = self.up2(x, x3)
|
1018 |
+
# x = self.up3(x, x2)
|
1019 |
+
# x = self.up4(x, x1)
|
1020 |
+
# x = self.outc(x)
|
1021 |
+
# return F.sigmoid(x)
|
1022 |
+
|
1023 |
+
|
1024 |
+
# ----------------------------------- RRDB (ESRGAN) ------------------------------------------
|
1025 |
+
|
1026 |
+
|
1027 |
+
def initialize_weights(net_l, scale=1):
|
1028 |
+
if not isinstance(net_l, list):
|
1029 |
+
net_l = [net_l]
|
1030 |
+
for net in net_l:
|
1031 |
+
for m in net.modules():
|
1032 |
+
if isinstance(m, nn.Conv2d):
|
1033 |
+
torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
1034 |
+
m.weight.data *= scale # for residual block
|
1035 |
+
if m.bias is not None:
|
1036 |
+
m.bias.data.zero_()
|
1037 |
+
elif isinstance(m, nn.Linear):
|
1038 |
+
torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
1039 |
+
m.weight.data *= scale
|
1040 |
+
if m.bias is not None:
|
1041 |
+
m.bias.data.zero_()
|
1042 |
+
elif isinstance(m, nn.BatchNorm2d):
|
1043 |
+
torch.nn.init.constant_(m.weight, 1)
|
1044 |
+
torch.nn.init.constant_(m.bias.data, 0.0)
|
1045 |
+
|
1046 |
+
|
1047 |
+
def make_layer(block, n_layers):
|
1048 |
+
layers = []
|
1049 |
+
for _ in range(n_layers):
|
1050 |
+
layers.append(block())
|
1051 |
+
return nn.Sequential(*layers)
|
1052 |
+
|
1053 |
+
|
1054 |
+
|
1055 |
+
|
1056 |
+
class ResidualDenseBlock_5C(nn.Module):
|
1057 |
+
def __init__(self, nf=64, gc=32, bias=True):
|
1058 |
+
super(ResidualDenseBlock_5C, self).__init__()
|
1059 |
+
# gc: growth channel, i.e. intermediate channels
|
1060 |
+
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
1061 |
+
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
1062 |
+
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
1063 |
+
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
1064 |
+
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
1065 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
1066 |
+
|
1067 |
+
# initialization
|
1068 |
+
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5],0.1)
|
1069 |
+
|
1070 |
+
def forward(self, x):
|
1071 |
+
x1 = self.lrelu(self.conv1(x))
|
1072 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
1073 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
1074 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
1075 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
1076 |
+
return x5 * 0.2 + x
|
1077 |
+
|
1078 |
+
|
1079 |
+
class RRDB(nn.Module):
|
1080 |
+
'''Residual in Residual Dense Block'''
|
1081 |
+
|
1082 |
+
def __init__(self, nf, gc=32):
|
1083 |
+
super(RRDB, self).__init__()
|
1084 |
+
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
1085 |
+
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
1086 |
+
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
1087 |
+
|
1088 |
+
def forward(self, x):
|
1089 |
+
out = self.RDB1(x)
|
1090 |
+
out = self.RDB2(out)
|
1091 |
+
out = self.RDB3(out)
|
1092 |
+
return out * 0.2 + x
|
1093 |
+
|
1094 |
+
|
1095 |
+
class RRDBNet(nn.Module):
|
1096 |
+
def __init__(self, opt, gc=32):
|
1097 |
+
super(RRDBNet, self).__init__()
|
1098 |
+
RRDB_block_f = functools.partial(RRDB, nf=opt.n_feats, gc=gc)
|
1099 |
+
|
1100 |
+
self.conv_first = nn.Conv2d(opt.nch_in, opt.n_feats, 3, 1, 1, bias=True)
|
1101 |
+
self.RRDB_trunk = make_layer(RRDB_block_f, opt.n_resblocks)
|
1102 |
+
self.trunk_conv = nn.Conv2d(opt.n_feats, opt.n_feats, 3, 1, 1, bias=True)
|
1103 |
+
#### upsampling
|
1104 |
+
self.upconv1 = nn.Conv2d(opt.n_feats, opt.n_feats, 3, 1, 1, bias=True)
|
1105 |
+
self.upconv2 = nn.Conv2d(opt.n_feats, opt.n_feats, 3, 1, 1, bias=True)
|
1106 |
+
self.HRconv = nn.Conv2d(opt.n_feats, opt.n_feats, 3, 1, 1, bias=True)
|
1107 |
+
self.conv_last = nn.Conv2d(opt.n_feats, opt.nch_out, 3, 1, 1, bias=True)
|
1108 |
+
|
1109 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
1110 |
+
self.scale = opt.scale
|
1111 |
+
|
1112 |
+
def forward(self, x):
|
1113 |
+
fea = self.conv_first(x)
|
1114 |
+
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
1115 |
+
fea = fea + trunk
|
1116 |
+
|
1117 |
+
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=self.scale, mode='nearest')))
|
1118 |
+
# fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=self.scale, mode='nearest')))
|
1119 |
+
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
1120 |
+
|
1121 |
+
return out
|
1122 |
+
|
1123 |
+
|
1124 |
+
|
1125 |
+
|
1126 |
+
# ----------------------------------- SRGAN ------------------------------------------
|
1127 |
+
|
1128 |
+
|
1129 |
+
def swish(x):
|
1130 |
+
return x * torch.sigmoid(x)
|
1131 |
+
|
1132 |
+
class FeatureExtractor(nn.Module):
|
1133 |
+
def __init__(self, cnn, feature_layer=11):
|
1134 |
+
super(FeatureExtractor, self).__init__()
|
1135 |
+
self.features = nn.Sequential(*list(cnn.features.children())[:(feature_layer+1)])
|
1136 |
+
|
1137 |
+
def forward(self, x):
|
1138 |
+
return self.features(x)
|
1139 |
+
|
1140 |
+
|
1141 |
+
class residualBlock(nn.Module):
|
1142 |
+
def __init__(self, in_channels=64, k=3, n=64, s=1):
|
1143 |
+
super(residualBlock, self).__init__()
|
1144 |
+
|
1145 |
+
self.conv1 = nn.Conv2d(in_channels, n, k, stride=s, padding=1)
|
1146 |
+
self.bn1 = nn.BatchNorm2d(n)
|
1147 |
+
self.conv2 = nn.Conv2d(n, n, k, stride=s, padding=1)
|
1148 |
+
self.bn2 = nn.BatchNorm2d(n)
|
1149 |
+
|
1150 |
+
def forward(self, x):
|
1151 |
+
y = swish(self.bn1(self.conv1(x)))
|
1152 |
+
return self.bn2(self.conv2(y)) + x
|
1153 |
+
|
1154 |
+
class upsampleBlock(nn.Module):
|
1155 |
+
# Implements resize-convolution
|
1156 |
+
def __init__(self, in_channels, out_channels):
|
1157 |
+
super(upsampleBlock, self).__init__()
|
1158 |
+
self.conv = nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1)
|
1159 |
+
self.shuffler = nn.PixelShuffle(2)
|
1160 |
+
|
1161 |
+
def forward(self, x):
|
1162 |
+
return swish(self.shuffler(self.conv(x)))
|
1163 |
+
|
1164 |
+
class Generator(nn.Module):
|
1165 |
+
def __init__(self, n_residual_blocks, opt):
|
1166 |
+
super(Generator, self).__init__()
|
1167 |
+
self.n_residual_blocks = n_residual_blocks
|
1168 |
+
self.upsample_factor = opt.scale
|
1169 |
+
|
1170 |
+
self.conv1 = nn.Conv2d(opt.nch_in, 64, 9, stride=1, padding=4)
|
1171 |
+
|
1172 |
+
if not opt.norm == None:
|
1173 |
+
self.normalize, self.unnormalize = normalizationTransforms(opt.norm)
|
1174 |
+
else:
|
1175 |
+
self.normalize, self.unnormalize = None, None
|
1176 |
+
|
1177 |
+
|
1178 |
+
for i in range(self.n_residual_blocks):
|
1179 |
+
self.add_module('residual_block' + str(i+1), residualBlock())
|
1180 |
+
|
1181 |
+
self.conv2 = nn.Conv2d(64, 64, 3, stride=1, padding=1)
|
1182 |
+
self.bn2 = nn.BatchNorm2d(64)
|
1183 |
+
|
1184 |
+
# for i in range(int(self.upsample_factor/2)):
|
1185 |
+
# self.add_module('upsample' + str(i+1), upsampleBlock(64, 256))
|
1186 |
+
|
1187 |
+
if opt.task == 'segment':
|
1188 |
+
self.conv3 = nn.Conv2d(64, 2, 1)
|
1189 |
+
else:
|
1190 |
+
self.conv3 = nn.Conv2d(64, opt.nch_out, 9, stride=1, padding=4)
|
1191 |
+
|
1192 |
+
def forward(self, x):
|
1193 |
+
|
1194 |
+
if not self.normalize == None:
|
1195 |
+
x = self.normalize(x)
|
1196 |
+
|
1197 |
+
x = swish(self.conv1(x))
|
1198 |
+
|
1199 |
+
y = x.clone()
|
1200 |
+
for i in range(self.n_residual_blocks):
|
1201 |
+
y = self.__getattr__('residual_block' + str(i+1))(y)
|
1202 |
+
|
1203 |
+
x = self.bn2(self.conv2(y)) + x
|
1204 |
+
|
1205 |
+
# for i in range(int(self.upsample_factor/2)):
|
1206 |
+
# x = self.__getattr__('upsample' + str(i+1))(x)
|
1207 |
+
|
1208 |
+
x = self.conv3(x)
|
1209 |
+
|
1210 |
+
if not self.unnormalize == None:
|
1211 |
+
x = self.unnormalize(x)
|
1212 |
+
|
1213 |
+
return x
|
1214 |
+
|
1215 |
+
class Discriminator(nn.Module):
|
1216 |
+
def __init__(self,opt):
|
1217 |
+
super(Discriminator, self).__init__()
|
1218 |
+
self.conv1 = nn.Conv2d(opt.nch_out, 64, 3, stride=1, padding=1)
|
1219 |
+
|
1220 |
+
self.conv2 = nn.Conv2d(64, 64, 3, stride=2, padding=1)
|
1221 |
+
self.bn2 = nn.BatchNorm2d(64)
|
1222 |
+
self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1)
|
1223 |
+
self.bn3 = nn.BatchNorm2d(128)
|
1224 |
+
self.conv4 = nn.Conv2d(128, 128, 3, stride=2, padding=1)
|
1225 |
+
self.bn4 = nn.BatchNorm2d(128)
|
1226 |
+
self.conv5 = nn.Conv2d(128, 256, 3, stride=1, padding=1)
|
1227 |
+
self.bn5 = nn.BatchNorm2d(256)
|
1228 |
+
self.conv6 = nn.Conv2d(256, 256, 3, stride=2, padding=1)
|
1229 |
+
self.bn6 = nn.BatchNorm2d(256)
|
1230 |
+
self.conv7 = nn.Conv2d(256, 512, 3, stride=1, padding=1)
|
1231 |
+
self.bn7 = nn.BatchNorm2d(512)
|
1232 |
+
self.conv8 = nn.Conv2d(512, 512, 3, stride=2, padding=1)
|
1233 |
+
self.bn8 = nn.BatchNorm2d(512)
|
1234 |
+
|
1235 |
+
# Replaced original paper FC layers with FCN
|
1236 |
+
self.conv9 = nn.Conv2d(512, 1, 1, stride=1, padding=1)
|
1237 |
+
|
1238 |
+
def forward(self, x):
|
1239 |
+
x = swish(self.conv1(x))
|
1240 |
+
|
1241 |
+
x = swish(self.bn2(self.conv2(x)))
|
1242 |
+
x = swish(self.bn3(self.conv3(x)))
|
1243 |
+
x = swish(self.bn4(self.conv4(x)))
|
1244 |
+
x = swish(self.bn5(self.conv5(x)))
|
1245 |
+
x = swish(self.bn6(self.conv6(x)))
|
1246 |
+
x = swish(self.bn7(self.conv7(x)))
|
1247 |
+
x = swish(self.bn8(self.conv8(x)))
|
1248 |
+
|
1249 |
+
x = self.conv9(x)
|
1250 |
+
return torch.sigmoid(F.avg_pool2d(x, x.size()[2:])).view(x.size()[0], -1)
|
1251 |
+
|
1252 |
+
|
1253 |
+
|
1254 |
+
|
1255 |
+
|
1256 |
+
|
1257 |
+
|
1258 |
+
|
1259 |
+
|
1260 |
+
class UNet_n2n(nn.Module):
|
1261 |
+
"""Custom U-Net architecture for Noise2Noise (see Appendix, Table 2)."""
|
1262 |
+
|
1263 |
+
def __init__(self, in_channels=3, out_channels=3, opt = {}):
|
1264 |
+
"""Initializes U-Net."""
|
1265 |
+
|
1266 |
+
super(UNet_n2n, self).__init__()
|
1267 |
+
|
1268 |
+
# Layers: enc_conv0, enc_conv1, pool1
|
1269 |
+
self._block1 = nn.Sequential(
|
1270 |
+
nn.Conv2d(in_channels, 48, 3, stride=1, padding=1),
|
1271 |
+
nn.ReLU(inplace=True),
|
1272 |
+
nn.Conv2d(48, 48, 3, padding=1),
|
1273 |
+
nn.ReLU(inplace=True),
|
1274 |
+
nn.MaxPool2d(2))
|
1275 |
+
|
1276 |
+
# Layers: enc_conv(i), pool(i); i=2..5
|
1277 |
+
self._block2 = nn.Sequential(
|
1278 |
+
nn.Conv2d(48, 48, 3, stride=1, padding=1),
|
1279 |
+
nn.ReLU(inplace=True),
|
1280 |
+
nn.MaxPool2d(2))
|
1281 |
+
|
1282 |
+
# Layers: enc_conv6, upsample5
|
1283 |
+
self._block3 = nn.Sequential(
|
1284 |
+
nn.Conv2d(48, 48, 3, stride=1, padding=1),
|
1285 |
+
nn.ReLU(inplace=True),
|
1286 |
+
nn.ConvTranspose2d(48, 48, 3, stride=2, padding=1, output_padding=1))
|
1287 |
+
#nn.Upsample(scale_factor=2, mode='nearest'))
|
1288 |
+
|
1289 |
+
# Layers: dec_conv5a, dec_conv5b, upsample4
|
1290 |
+
self._block4 = nn.Sequential(
|
1291 |
+
nn.Conv2d(96, 96, 3, stride=1, padding=1),
|
1292 |
+
nn.ReLU(inplace=True),
|
1293 |
+
nn.Conv2d(96, 96, 3, stride=1, padding=1),
|
1294 |
+
nn.ReLU(inplace=True),
|
1295 |
+
nn.ConvTranspose2d(96, 96, 3, stride=2, padding=1, output_padding=1))
|
1296 |
+
#nn.Upsample(scale_factor=2, mode='nearest'))
|
1297 |
+
|
1298 |
+
# Layers: dec_deconv(i)a, dec_deconv(i)b, upsample(i-1); i=4..2
|
1299 |
+
self._block5 = nn.Sequential(
|
1300 |
+
nn.Conv2d(144, 96, 3, stride=1, padding=1),
|
1301 |
+
nn.ReLU(inplace=True),
|
1302 |
+
nn.Conv2d(96, 96, 3, stride=1, padding=1),
|
1303 |
+
nn.ReLU(inplace=True),
|
1304 |
+
nn.ConvTranspose2d(96, 96, 3, stride=2, padding=1, output_padding=1))
|
1305 |
+
#nn.Upsample(scale_factor=2, mode='nearest'))
|
1306 |
+
|
1307 |
+
# Layers: dec_conv1a, dec_conv1b, dec_conv1c,
|
1308 |
+
self._block6 = nn.Sequential(
|
1309 |
+
nn.Conv2d(96 + in_channels, 64, 3, stride=1, padding=1),
|
1310 |
+
nn.ReLU(inplace=True),
|
1311 |
+
nn.Conv2d(64, 32, 3, stride=1, padding=1),
|
1312 |
+
nn.ReLU(inplace=True),
|
1313 |
+
nn.Conv2d(32, out_channels, 3, stride=1, padding=1),
|
1314 |
+
nn.LeakyReLU(0.1))
|
1315 |
+
|
1316 |
+
# Initialize weights
|
1317 |
+
self._init_weights()
|
1318 |
+
|
1319 |
+
self.task = opt.task
|
1320 |
+
if opt.task == 'segment':
|
1321 |
+
self._block6 = nn.Sequential(
|
1322 |
+
nn.Conv2d(96 + in_channels, 64, 3, stride=1, padding=1),
|
1323 |
+
nn.ReLU(inplace=True),
|
1324 |
+
nn.Conv2d(64, 32, 3, stride=1, padding=1),
|
1325 |
+
nn.ReLU(inplace=True),
|
1326 |
+
nn.Conv2d(32, 2, 1))
|
1327 |
+
|
1328 |
+
|
1329 |
+
|
1330 |
+
def _init_weights(self):
|
1331 |
+
"""Initializes weights using He et al. (2015)."""
|
1332 |
+
|
1333 |
+
for m in self.modules():
|
1334 |
+
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
|
1335 |
+
nn.init.kaiming_normal_(m.weight.data)
|
1336 |
+
m.bias.data.zero_()
|
1337 |
+
|
1338 |
+
|
1339 |
+
def forward(self, x):
|
1340 |
+
"""Through encoder, then decoder by adding U-skip connections. """
|
1341 |
+
|
1342 |
+
# Encoder
|
1343 |
+
pool1 = self._block1(x)
|
1344 |
+
pool2 = self._block2(pool1)
|
1345 |
+
pool3 = self._block2(pool2)
|
1346 |
+
pool4 = self._block2(pool3)
|
1347 |
+
pool5 = self._block2(pool4)
|
1348 |
+
|
1349 |
+
# Decoder
|
1350 |
+
upsample5 = self._block3(pool5)
|
1351 |
+
concat5 = torch.cat((upsample5, pool4), dim=1)
|
1352 |
+
upsample4 = self._block4(concat5)
|
1353 |
+
concat4 = torch.cat((upsample4, pool3), dim=1)
|
1354 |
+
upsample3 = self._block5(concat4)
|
1355 |
+
concat3 = torch.cat((upsample3, pool2), dim=1)
|
1356 |
+
upsample2 = self._block5(concat3)
|
1357 |
+
concat2 = torch.cat((upsample2, pool1), dim=1)
|
1358 |
+
upsample1 = self._block5(concat2)
|
1359 |
+
concat1 = torch.cat((upsample1, x), dim=1)
|
1360 |
+
|
1361 |
+
# Final activation
|
1362 |
+
return self._block6(concat1)
|
1363 |
+
|
1364 |
+
|
1365 |
+
|
1366 |
+
# ------------------ Alternative UNet implementation (batchnorm. outcommented)
|
1367 |
+
|
1368 |
+
|
1369 |
+
class double_conv(nn.Module):
|
1370 |
+
'''(conv => BN => ReLU) * 2'''
|
1371 |
+
def __init__(self, in_ch, out_ch):
|
1372 |
+
super(double_conv, self).__init__()
|
1373 |
+
self.conv = nn.Sequential(
|
1374 |
+
nn.Conv2d(in_ch, out_ch, 3, padding=1),
|
1375 |
+
# nn.BatchNorm2d(out_ch),
|
1376 |
+
nn.ReLU(inplace=True),
|
1377 |
+
nn.Conv2d(out_ch, out_ch, 3, padding=1),
|
1378 |
+
# nn.BatchNorm2d(out_ch),
|
1379 |
+
nn.ReLU(inplace=True)
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
def forward(self, x):
|
1383 |
+
x = self.conv(x)
|
1384 |
+
return x
|
1385 |
+
|
1386 |
+
|
1387 |
+
class inconv(nn.Module):
|
1388 |
+
def __init__(self, in_ch, out_ch):
|
1389 |
+
super(inconv, self).__init__()
|
1390 |
+
self.conv = double_conv(in_ch, out_ch)
|
1391 |
+
|
1392 |
+
def forward(self, x):
|
1393 |
+
x = self.conv(x)
|
1394 |
+
return x
|
1395 |
+
|
1396 |
+
|
1397 |
+
class down(nn.Module):
|
1398 |
+
def __init__(self, in_ch, out_ch):
|
1399 |
+
super(down, self).__init__()
|
1400 |
+
self.mpconv = nn.Sequential(
|
1401 |
+
nn.MaxPool2d(2),
|
1402 |
+
# nn.Conv2d(in_ch,in_ch, 2, stride=2),
|
1403 |
+
double_conv(in_ch, out_ch)
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
def forward(self, x):
|
1407 |
+
x = self.mpconv(x)
|
1408 |
+
return x
|
1409 |
+
|
1410 |
+
|
1411 |
+
class up(nn.Module):
|
1412 |
+
def __init__(self, in_ch, out_ch, bilinear=False):
|
1413 |
+
super(up, self).__init__()
|
1414 |
+
|
1415 |
+
# would be a nice idea if the upsampling could be learned too,
|
1416 |
+
# but my machine do not have enough memory to handle all those weights
|
1417 |
+
if bilinear:
|
1418 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
1419 |
+
else:
|
1420 |
+
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)
|
1421 |
+
|
1422 |
+
self.conv = double_conv(in_ch, out_ch)
|
1423 |
+
|
1424 |
+
def forward(self, x1, x2):
|
1425 |
+
x1 = self.up(x1)
|
1426 |
+
|
1427 |
+
# input is CHW
|
1428 |
+
diffY = x2.size()[2] - x1.size()[2]
|
1429 |
+
diffX = x2.size()[3] - x1.size()[3]
|
1430 |
+
|
1431 |
+
x1 = F.pad(x1, (diffX // 2, diffX - diffX//2,
|
1432 |
+
diffY // 2, diffY - diffY//2))
|
1433 |
+
|
1434 |
+
# for padding issues, see
|
1435 |
+
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
|
1436 |
+
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
|
1437 |
+
|
1438 |
+
x = torch.cat([x2, x1], dim=1)
|
1439 |
+
x = self.conv(x)
|
1440 |
+
return x
|
1441 |
+
|
1442 |
+
|
1443 |
+
class outconv(nn.Module):
|
1444 |
+
def __init__(self, in_ch, out_ch):
|
1445 |
+
super(outconv, self).__init__()
|
1446 |
+
self.conv = nn.Conv2d(in_ch, out_ch, 1)
|
1447 |
+
|
1448 |
+
def forward(self, x):
|
1449 |
+
x = self.conv(x)
|
1450 |
+
return x
|
1451 |
+
|
1452 |
+
|
1453 |
+
class UNet(nn.Module):
|
1454 |
+
def __init__(self, n_channels, n_classes,opt):
|
1455 |
+
super(UNet, self).__init__()
|
1456 |
+
self.inc = inconv(n_channels, 64)
|
1457 |
+
self.down1 = down(64, 128)
|
1458 |
+
self.down2 = down(128, 256)
|
1459 |
+
self.down3 = down(256, 512)
|
1460 |
+
self.down4 = down(512, 512)
|
1461 |
+
self.up1 = up(1024, 256)
|
1462 |
+
self.up2 = up(512, 128)
|
1463 |
+
self.up3 = up(256, 64)
|
1464 |
+
self.up4 = up(128, 64)
|
1465 |
+
|
1466 |
+
if opt.task == 'segment':
|
1467 |
+
self.outc = outconv(64, 2)
|
1468 |
+
else:
|
1469 |
+
self.outc = outconv(64, n_classes)
|
1470 |
+
|
1471 |
+
# Initialize weights
|
1472 |
+
# self._init_weights()
|
1473 |
+
|
1474 |
+
|
1475 |
+
def _init_weights(self):
|
1476 |
+
"""Initializes weights using He et al. (2015)."""
|
1477 |
+
|
1478 |
+
for m in self.modules():
|
1479 |
+
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
|
1480 |
+
nn.init.kaiming_normal_(m.weight.data)
|
1481 |
+
m.bias.data.zero_()
|
1482 |
+
|
1483 |
+
|
1484 |
+
def forward(self, x):
|
1485 |
+
x1 = self.inc(x)
|
1486 |
+
x2 = self.down1(x1)
|
1487 |
+
x3 = self.down2(x2)
|
1488 |
+
x4 = self.down3(x3)
|
1489 |
+
x5 = self.down4(x4)
|
1490 |
+
x = self.up1(x5, x4)
|
1491 |
+
x = self.up2(x, x3)
|
1492 |
+
x = self.up3(x, x2)
|
1493 |
+
x = self.up4(x, x1)
|
1494 |
+
x = self.outc(x)
|
1495 |
+
return F.sigmoid(x)
|
1496 |
+
|
1497 |
+
|
1498 |
+
class UNet60M(nn.Module):
|
1499 |
+
def __init__(self, n_channels, n_classes):
|
1500 |
+
super(UNet60M, self).__init__()
|
1501 |
+
self.inc = inconv(n_channels, 64)
|
1502 |
+
self.down1 = down(64, 128)
|
1503 |
+
self.down2 = down(128, 256)
|
1504 |
+
self.down3 = down(256, 512)
|
1505 |
+
self.down4 = down(512, 1024)
|
1506 |
+
self.down5 = down(1024, 1024)
|
1507 |
+
self.up1 = up(2048, 512)
|
1508 |
+
self.up2 = up(1024, 256)
|
1509 |
+
self.up3 = up(512, 128)
|
1510 |
+
self.up4 = up(256, 64)
|
1511 |
+
self.up5 = up(128, 64)
|
1512 |
+
self.outc = outconv(64, n_classes)
|
1513 |
+
|
1514 |
+
def forward(self, x):
|
1515 |
+
x1 = self.inc(x)
|
1516 |
+
x2 = self.down1(x1)
|
1517 |
+
x3 = self.down2(x2)
|
1518 |
+
x4 = self.down3(x3)
|
1519 |
+
x5 = self.down4(x4)
|
1520 |
+
x6 = self.down5(x5)
|
1521 |
+
x = self.up1(x6, x5)
|
1522 |
+
x = self.up2(x, x4)
|
1523 |
+
x = self.up3(x, x3)
|
1524 |
+
x = self.up4(x, x2)
|
1525 |
+
x = self.up5(x, x1)
|
1526 |
+
x = self.outc(x)
|
1527 |
+
return F.sigmoid(x)
|
1528 |
+
|
1529 |
+
|
1530 |
+
class UNetRep(nn.Module):
|
1531 |
+
def __init__(self, n_channels, n_classes):
|
1532 |
+
super(UNetRep, self).__init__()
|
1533 |
+
self.inc = inconv(n_channels, 64)
|
1534 |
+
self.down1 = down(64, 128)
|
1535 |
+
self.down2 = down(128, 128)
|
1536 |
+
self.up1 = up1(256, 128, 128)
|
1537 |
+
self.up2 = up1(192, 64, 128)
|
1538 |
+
|
1539 |
+
self.outc = outconv(64, n_classes)
|
1540 |
+
|
1541 |
+
def forward(self, x):
|
1542 |
+
x1 = self.inc(x)
|
1543 |
+
|
1544 |
+
for _ in range(3):
|
1545 |
+
x2 = self.down1(x1)
|
1546 |
+
x3 = self.down2(x2)
|
1547 |
+
x = self.up1(x3,x2)
|
1548 |
+
x1 = self.up2(x,x1)
|
1549 |
+
|
1550 |
+
# x6 = self.down5(x5)
|
1551 |
+
# x = self.up1(x6, x5)
|
1552 |
+
# x = self.up2(x, x4)
|
1553 |
+
# x = self.up3(x, x3)
|
1554 |
+
# x = self.up4(x, x2)
|
1555 |
+
# x = self.up5(x, x1)
|
1556 |
+
x = self.outc(x1)
|
1557 |
+
return F.sigmoid(x)
|
1558 |
+
|
1559 |
+
|
1560 |
+
|
1561 |
+
|
1562 |
+
# ------------------- UNet Noise2noise implementation
|
1563 |
+
|
1564 |
+
class single_conv(nn.Module):
|
1565 |
+
'''(conv => BN => ReLU) * 2'''
|
1566 |
+
def __init__(self, in_ch, out_ch):
|
1567 |
+
super(single_conv, self).__init__()
|
1568 |
+
self.conv = nn.Sequential(
|
1569 |
+
nn.Conv2d(in_ch, out_ch, 3, padding=1),
|
1570 |
+
# nn.BatchNorm2d(out_ch),
|
1571 |
+
nn.ReLU(inplace=True),
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
def forward(self, x):
|
1575 |
+
x = self.conv(x)
|
1576 |
+
return x
|
1577 |
+
|
1578 |
+
|
1579 |
+
class outconv2(nn.Module):
|
1580 |
+
def __init__(self, in_ch, out_ch):
|
1581 |
+
super(outconv2, self).__init__()
|
1582 |
+
self.conv = nn.Conv2d(in_ch, out_ch, 3, padding=1)
|
1583 |
+
|
1584 |
+
def forward(self, x):
|
1585 |
+
x = self.conv(x)
|
1586 |
+
return x
|
1587 |
+
|
1588 |
+
|
1589 |
+
class up1(nn.Module):
|
1590 |
+
def __init__(self, in_ch, out_ch, convtr, bilinear=False):
|
1591 |
+
super(up1, self).__init__()
|
1592 |
+
|
1593 |
+
# would be a nice idea if the upsampling could be learned too,
|
1594 |
+
# but my machine do not have enough memory to handle all those weights
|
1595 |
+
if bilinear:
|
1596 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
1597 |
+
else:
|
1598 |
+
self.up = nn.ConvTranspose2d(convtr, convtr, 3, stride=2)
|
1599 |
+
|
1600 |
+
self.conv = double_conv(in_ch, out_ch)
|
1601 |
+
|
1602 |
+
def forward(self, x1, x2):
|
1603 |
+
x1 = self.up(x1)
|
1604 |
+
|
1605 |
+
# input is CHW
|
1606 |
+
diffY = x2.size()[2] - x1.size()[2]
|
1607 |
+
diffX = x2.size()[3] - x1.size()[3]
|
1608 |
+
|
1609 |
+
x1 = F.pad(x1, (diffX // 2, diffX - diffX//2,
|
1610 |
+
diffY // 2, diffY - diffY//2))
|
1611 |
+
|
1612 |
+
# for padding issues, see
|
1613 |
+
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
|
1614 |
+
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
|
1615 |
+
|
1616 |
+
x = torch.cat([x2, x1], dim=1)
|
1617 |
+
x = self.conv(x)
|
1618 |
+
return x
|
1619 |
+
|
1620 |
+
class up2(nn.Module):
|
1621 |
+
def __init__(self, in_ch, in_ch2, out_ch,out_ch2,convtr, bilinear=False):
|
1622 |
+
super(up2, self).__init__()
|
1623 |
+
|
1624 |
+
# would be a nice idea if the upsampling could be learned too,
|
1625 |
+
# but my machine do not have enough memory to handle all those weights
|
1626 |
+
if bilinear:
|
1627 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
1628 |
+
else:
|
1629 |
+
self.up = nn.ConvTranspose2d(convtr, convtr, 3, stride=2)
|
1630 |
+
|
1631 |
+
# self.conv = double_conv(in_ch, out_ch)
|
1632 |
+
self.conv = nn.Conv2d(in_ch + in_ch2, out_ch, 3, padding=1)
|
1633 |
+
self.conv2 = nn.Conv2d(out_ch, out_ch2, 3, padding=1)
|
1634 |
+
|
1635 |
+
|
1636 |
+
def forward(self, x1, x2):
|
1637 |
+
x1 = self.up(x1)
|
1638 |
+
|
1639 |
+
# input is CHW
|
1640 |
+
diffY = x2.size()[2] - x1.size()[2]
|
1641 |
+
diffX = x2.size()[3] - x1.size()[3]
|
1642 |
+
|
1643 |
+
x1 = F.pad(x1, (diffX // 2, diffX - diffX//2,
|
1644 |
+
diffY // 2, diffY - diffY//2))
|
1645 |
+
|
1646 |
+
# for padding issues, see
|
1647 |
+
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
|
1648 |
+
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
|
1649 |
+
x = torch.cat([x2, x1], dim=1)
|
1650 |
+
x = self.conv(x)
|
1651 |
+
x = self.conv2(x)
|
1652 |
+
return x
|
1653 |
+
|
1654 |
+
class down2(nn.Module):
|
1655 |
+
def __init__(self, in_ch, out_ch):
|
1656 |
+
super(down2, self).__init__()
|
1657 |
+
self.mpconv = nn.Sequential(
|
1658 |
+
# nn.MaxPool2d(2),
|
1659 |
+
nn.Conv2d(in_ch,in_ch, 2, stride=2),
|
1660 |
+
single_conv(in_ch, out_ch)
|
1661 |
+
)
|
1662 |
+
|
1663 |
+
def forward(self, x):
|
1664 |
+
x = self.mpconv(x)
|
1665 |
+
return x
|
1666 |
+
|
1667 |
+
|
1668 |
+
class UNetGreedy(nn.Module):
|
1669 |
+
def __init__(self, n_channels, n_classes):
|
1670 |
+
super(UNetGreedy, self).__init__()
|
1671 |
+
self.inc = inconv(n_channels, 144)
|
1672 |
+
self.down1 = down(144, 144)
|
1673 |
+
self.down2 = down2(144, 144)
|
1674 |
+
self.down3 = down2(144, 144)
|
1675 |
+
self.down4 = down2(144, 144)
|
1676 |
+
self.down5 = down2(144, 144)
|
1677 |
+
self.up1 = up1(288, 288,144)
|
1678 |
+
self.up2 = up1(432, 288,288)
|
1679 |
+
self.up3 = up1(432, 288,288)
|
1680 |
+
self.up4 = up1(432, 288,288)
|
1681 |
+
self.up5 = up2(288, n_channels, 64, 32,288)
|
1682 |
+
self.outc = outconv2(32, n_classes)
|
1683 |
+
|
1684 |
+
def forward(self, x0):
|
1685 |
+
x1 = self.inc(x0)
|
1686 |
+
x2 = self.down1(x1)
|
1687 |
+
x3 = self.down2(x2)
|
1688 |
+
x4 = self.down3(x3)
|
1689 |
+
x5 = self.down4(x4)
|
1690 |
+
x6 = self.down5(x5)
|
1691 |
+
x = self.up1(x6, x5)
|
1692 |
+
x = self.up2(x, x4)
|
1693 |
+
x = self.up3(x, x3)
|
1694 |
+
x = self.up4(x, x2)
|
1695 |
+
x = self.up5(x, x0)
|
1696 |
+
x = self.outc(x)
|
1697 |
+
return F.sigmoid(x)
|
1698 |
+
|
1699 |
+
|
1700 |
+
class UNet2(nn.Module):
|
1701 |
+
def __init__(self, n_channels, n_classes):
|
1702 |
+
super(UNet2, self).__init__()
|
1703 |
+
self.inc = inconv(n_channels, 48)
|
1704 |
+
self.down1 = down(48, 48)
|
1705 |
+
self.down2 = down2(48, 48)
|
1706 |
+
self.down3 = down2(48, 48)
|
1707 |
+
self.down4 = down2(48, 48)
|
1708 |
+
self.down5 = down2(48, 48)
|
1709 |
+
self.up1 = up1(96, 96,48)
|
1710 |
+
self.up2 = up1(144, 96,96)
|
1711 |
+
self.up3 = up1(144, 96,96)
|
1712 |
+
self.up4 = up1(144, 96,96)
|
1713 |
+
self.up5 = up2(96, n_channels, 64, 32,96)
|
1714 |
+
self.outc = outconv2(32, n_classes)
|
1715 |
+
|
1716 |
+
def forward(self, x0):
|
1717 |
+
x1 = self.inc(x0)
|
1718 |
+
x2 = self.down1(x1)
|
1719 |
+
x3 = self.down2(x2)
|
1720 |
+
x4 = self.down3(x3)
|
1721 |
+
x5 = self.down4(x4)
|
1722 |
+
x6 = self.down5(x5)
|
1723 |
+
x = self.up1(x6, x5)
|
1724 |
+
x = self.up2(x, x4)
|
1725 |
+
x = self.up3(x, x3)
|
1726 |
+
x = self.up4(x, x2)
|
1727 |
+
x = self.up5(x, x0)
|
1728 |
+
x = self.outc(x)
|
1729 |
+
return F.sigmoid(x)
|
1730 |
+
|
1731 |
+
|
1732 |
+
class MLPNet(nn.Module):
|
1733 |
+
def __init__(self):
|
1734 |
+
super(MLPNet, self).__init__()
|
1735 |
+
# 1 input image channel, 6 output channels, 5x5 square convolution kernel
|
1736 |
+
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
|
1737 |
+
self.conv12 = nn.Conv2d(64, 64, 3, padding=1)
|
1738 |
+
self.pool = nn.MaxPool2d(2,2)
|
1739 |
+
self.conv2 = nn.Conv2d(64, 96, 3, padding=1)
|
1740 |
+
self.conv22 = nn.Conv2d(96, 128, 3, padding=1)
|
1741 |
+
self.conv3 = nn.Conv2d(96, 128, 3, padding=1)
|
1742 |
+
self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
|
1743 |
+
self.conv5 = nn.Conv2d(128, 64, 3, padding=1)
|
1744 |
+
self.conv6 = nn.Conv2d(64, 32, 5)
|
1745 |
+
# self.conv3 = nn.Conv2d(24, 48, 3, padding=1)
|
1746 |
+
self.fc = nn.Sequential(
|
1747 |
+
nn.Linear(6*6*32, 100),
|
1748 |
+
nn.ReLU(),
|
1749 |
+
nn.Dropout2d(p=0.2),
|
1750 |
+
nn.Linear(100, 1),
|
1751 |
+
nn.ReLU()
|
1752 |
+
)
|
1753 |
+
# self.fc2 = nn.Linear(100,50)
|
1754 |
+
# self.fc3 = nn.Linear(50,20)
|
1755 |
+
# self.fc4 = nn.Linear(20,1)
|
1756 |
+
|
1757 |
+
def forward(self, x):
|
1758 |
+
x = F.relu(self.conv1(x))
|
1759 |
+
x = F.relu(self.conv12(x))
|
1760 |
+
x = self.pool(x)
|
1761 |
+
x = F.relu(self.conv2(x))
|
1762 |
+
# x = F.relu(self.conv22(x))
|
1763 |
+
x = self.pool(x)
|
1764 |
+
x = F.relu(self.conv3(x))
|
1765 |
+
x = F.relu(self.conv4(x))
|
1766 |
+
x = self.pool(x)
|
1767 |
+
x = F.relu(self.conv5(x))
|
1768 |
+
x = self.pool(x)
|
1769 |
+
x = F.relu(self.conv6(x))
|
1770 |
+
x = self.pool(x)
|
1771 |
+
x = x.view(-1, 6*6*32)
|
1772 |
+
x = self.fc(x)
|
1773 |
+
# x = F.relu(self.fc1(x))
|
1774 |
+
# x = F.relu(self.fc2(x))
|
1775 |
+
return x
|
1776 |
+
|
1777 |
+
|
1778 |
+
|
1779 |
+
# --------------------- FFDNet
|
1780 |
+
from torch.autograd import Function, Variable
|
1781 |
+
|
1782 |
+
def concatenate_input_noise_map(input, noise_sigma):
|
1783 |
+
r"""Implements the first layer of FFDNet. This function returns a
|
1784 |
+
torch.autograd.Variable composed of the concatenation of the downsampled
|
1785 |
+
input image and the noise map. Each image of the batch of size CxHxW gets
|
1786 |
+
converted to an array of size 4*CxH/2xW/2. Each of the pixels of the
|
1787 |
+
non-overlapped 2x2 patches of the input image are placed in the new array
|
1788 |
+
along the first dimension.
|
1789 |
+
|
1790 |
+
Args:
|
1791 |
+
input: batch containing CxHxW images
|
1792 |
+
noise_sigma: the value of the pixels of the CxH/2xW/2 noise map
|
1793 |
+
"""
|
1794 |
+
# noise_sigma is a list of length batch_size
|
1795 |
+
N, C, H, W = input.size()
|
1796 |
+
dtype = input.type()
|
1797 |
+
sca = 2
|
1798 |
+
sca2 = sca*sca
|
1799 |
+
Cout = sca2*C
|
1800 |
+
Hout = H//sca
|
1801 |
+
Wout = W//sca
|
1802 |
+
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
|
1803 |
+
|
1804 |
+
# Fill the downsampled image with zeros
|
1805 |
+
if 'cuda' in dtype:
|
1806 |
+
downsampledfeatures = torch.cuda.FloatTensor(N, Cout, Hout, Wout).fill_(0)
|
1807 |
+
else:
|
1808 |
+
downsampledfeatures = torch.FloatTensor(N, Cout, Hout, Wout).fill_(0)
|
1809 |
+
|
1810 |
+
# Build the CxH/2xW/2 noise map
|
1811 |
+
noise_map = noise_sigma.view(N, 1, 1, 1).repeat(1, C, Hout, Wout)
|
1812 |
+
|
1813 |
+
# Populate output
|
1814 |
+
for idx in range(sca2):
|
1815 |
+
downsampledfeatures[:, idx:Cout:sca2, :, :] = \
|
1816 |
+
input[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca]
|
1817 |
+
|
1818 |
+
# concatenate de-interleaved mosaic with noise map
|
1819 |
+
return torch.cat((noise_map, downsampledfeatures), 1)
|
1820 |
+
|
1821 |
+
class UpSampleFeaturesFunction(Function):
|
1822 |
+
r"""Extends PyTorch's modules by implementing a torch.autograd.Function.
|
1823 |
+
This class implements the forward and backward methods of the last layer
|
1824 |
+
of FFDNet. It basically performs the inverse of
|
1825 |
+
concatenate_input_noise_map(): it converts each of the images of a
|
1826 |
+
batch of size CxH/2xW/2 to images of size C/4xHxW
|
1827 |
+
"""
|
1828 |
+
@staticmethod
|
1829 |
+
def forward(ctx, input):
|
1830 |
+
N, Cin, Hin, Win = input.size()
|
1831 |
+
dtype = input.type()
|
1832 |
+
sca = 2
|
1833 |
+
sca2 = sca*sca
|
1834 |
+
Cout = Cin//sca2
|
1835 |
+
Hout = Hin*sca
|
1836 |
+
Wout = Win*sca
|
1837 |
+
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
|
1838 |
+
|
1839 |
+
assert (Cin%sca2 == 0), \
|
1840 |
+
'Invalid input dimensions: number of channels should be divisible by 4'
|
1841 |
+
|
1842 |
+
result = torch.zeros((N, Cout, Hout, Wout)).type(dtype)
|
1843 |
+
for idx in range(sca2):
|
1844 |
+
result[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca] = \
|
1845 |
+
input[:, idx:Cin:sca2, :, :]
|
1846 |
+
|
1847 |
+
return result
|
1848 |
+
|
1849 |
+
@staticmethod
|
1850 |
+
def backward(ctx, grad_output):
|
1851 |
+
N, Cg_out, Hg_out, Wg_out = grad_output.size()
|
1852 |
+
dtype = grad_output.data.type()
|
1853 |
+
sca = 2
|
1854 |
+
sca2 = sca*sca
|
1855 |
+
Cg_in = sca2*Cg_out
|
1856 |
+
Hg_in = Hg_out//sca
|
1857 |
+
Wg_in = Wg_out//sca
|
1858 |
+
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
|
1859 |
+
|
1860 |
+
# Build output
|
1861 |
+
grad_input = torch.zeros((N, Cg_in, Hg_in, Wg_in)).type(dtype)
|
1862 |
+
# Populate output
|
1863 |
+
for idx in range(sca2):
|
1864 |
+
grad_input[:, idx:Cg_in:sca2, :, :] = \
|
1865 |
+
grad_output.data[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca]
|
1866 |
+
|
1867 |
+
return Variable(grad_input)
|
1868 |
+
|
1869 |
+
# Alias functions
|
1870 |
+
upsamplefeatures = UpSampleFeaturesFunction.apply
|
1871 |
+
|
1872 |
+
|
1873 |
+
|
1874 |
+
|
1875 |
+
class UpSampleFeatures(nn.Module):
|
1876 |
+
r"""Implements the last layer of FFDNet
|
1877 |
+
"""
|
1878 |
+
def __init__(self):
|
1879 |
+
super(UpSampleFeatures, self).__init__()
|
1880 |
+
def forward(self, x):
|
1881 |
+
return upsamplefeatures(x)
|
1882 |
+
|
1883 |
+
class IntermediateDnCNN(nn.Module):
|
1884 |
+
r"""Implements the middel part of the FFDNet architecture, which
|
1885 |
+
is basically a DnCNN net
|
1886 |
+
"""
|
1887 |
+
def __init__(self, input_features, middle_features, num_conv_layers):
|
1888 |
+
super(IntermediateDnCNN, self).__init__()
|
1889 |
+
self.kernel_size = 3
|
1890 |
+
self.padding = 1
|
1891 |
+
self.input_features = input_features
|
1892 |
+
self.num_conv_layers = num_conv_layers
|
1893 |
+
self.middle_features = middle_features
|
1894 |
+
if self.input_features == 5:
|
1895 |
+
self.output_features = 4 #Grayscale image
|
1896 |
+
elif self.input_features == 15:
|
1897 |
+
self.output_features = 12 #RGB image
|
1898 |
+
else:
|
1899 |
+
self.output_features = 3
|
1900 |
+
# raise Exception('Invalid number of input features')
|
1901 |
+
|
1902 |
+
|
1903 |
+
layers = []
|
1904 |
+
layers.append(nn.Conv2d(in_channels=self.input_features,\
|
1905 |
+
out_channels=self.middle_features,\
|
1906 |
+
kernel_size=self.kernel_size,\
|
1907 |
+
padding=self.padding,\
|
1908 |
+
bias=False))
|
1909 |
+
layers.append(nn.ReLU(inplace=True))
|
1910 |
+
for _ in range(self.num_conv_layers-2):
|
1911 |
+
layers.append(nn.Conv2d(in_channels=self.middle_features,\
|
1912 |
+
out_channels=self.middle_features,\
|
1913 |
+
kernel_size=self.kernel_size,\
|
1914 |
+
padding=self.padding,\
|
1915 |
+
bias=False))
|
1916 |
+
# layers.append(nn.BatchNorm2d(self.middle_features))
|
1917 |
+
layers.append(nn.ReLU(inplace=True))
|
1918 |
+
layers.append(nn.Conv2d(in_channels=self.middle_features,\
|
1919 |
+
out_channels=self.output_features,\
|
1920 |
+
kernel_size=self.kernel_size,\
|
1921 |
+
padding=self.padding,\
|
1922 |
+
bias=False))
|
1923 |
+
self.itermediate_dncnn = nn.Sequential(*layers)
|
1924 |
+
def forward(self, x):
|
1925 |
+
out = self.itermediate_dncnn(x)
|
1926 |
+
return out
|
1927 |
+
|
1928 |
+
class FFDNet(nn.Module):
|
1929 |
+
r"""Implements the FFDNet architecture
|
1930 |
+
"""
|
1931 |
+
def __init__(self, num_input_channels, test_mode=False):
|
1932 |
+
super(FFDNet, self).__init__()
|
1933 |
+
self.num_input_channels = num_input_channels
|
1934 |
+
self.test_mode = test_mode
|
1935 |
+
if self.num_input_channels == 1:
|
1936 |
+
# Grayscale image
|
1937 |
+
self.num_feature_maps = 64
|
1938 |
+
self.num_conv_layers = 15
|
1939 |
+
self.downsampled_channels = 5
|
1940 |
+
self.output_features = 4
|
1941 |
+
elif self.num_input_channels == 3:
|
1942 |
+
# RGB image
|
1943 |
+
self.num_feature_maps = 96
|
1944 |
+
self.num_conv_layers = 12
|
1945 |
+
self.downsampled_channels = 15
|
1946 |
+
self.output_features = 12
|
1947 |
+
else:
|
1948 |
+
raise Exception('Invalid number of input features')
|
1949 |
+
|
1950 |
+
self.intermediate_dncnn = IntermediateDnCNN(\
|
1951 |
+
input_features=self.downsampled_channels,\
|
1952 |
+
middle_features=self.num_feature_maps,\
|
1953 |
+
num_conv_layers=self.num_conv_layers)
|
1954 |
+
self.upsamplefeatures = UpSampleFeatures()
|
1955 |
+
|
1956 |
+
def forward(self, x, noise_sigma):
|
1957 |
+
concat_noise_x = concatenate_input_noise_map(\
|
1958 |
+
x.data, noise_sigma.data)
|
1959 |
+
if self.test_mode:
|
1960 |
+
concat_noise_x = Variable(concat_noise_x, volatile=True)
|
1961 |
+
else:
|
1962 |
+
concat_noise_x = Variable(concat_noise_x)
|
1963 |
+
h_dncnn = self.intermediate_dncnn(concat_noise_x)
|
1964 |
+
pred_noise = self.upsamplefeatures(h_dncnn)
|
1965 |
+
return pred_noise
|
1966 |
+
|
1967 |
+
|
1968 |
+
class DNCNN(nn.Module):
|
1969 |
+
r"""Implements the DNCNNNet architecture
|
1970 |
+
"""
|
1971 |
+
def __init__(self, num_input_channels, test_mode=False):
|
1972 |
+
super(DNCNN, self).__init__()
|
1973 |
+
self.num_input_channels = num_input_channels
|
1974 |
+
self.test_mode = test_mode
|
1975 |
+
if self.num_input_channels == 1:
|
1976 |
+
# Grayscale image
|
1977 |
+
self.num_feature_maps = 64
|
1978 |
+
self.num_conv_layers = 15
|
1979 |
+
self.downsampled_channels = 5
|
1980 |
+
self.output_features = 4
|
1981 |
+
elif self.num_input_channels == 3:
|
1982 |
+
# RGB image
|
1983 |
+
self.num_feature_maps = 96
|
1984 |
+
self.num_conv_layers = 12
|
1985 |
+
self.downsampled_channels = 15
|
1986 |
+
self.output_features = 12
|
1987 |
+
else:
|
1988 |
+
raise Exception('Invalid number of input features')
|
1989 |
+
|
1990 |
+
self.intermediate_dncnn = IntermediateDnCNN(\
|
1991 |
+
input_features=self.num_input_channels,\
|
1992 |
+
middle_features=self.num_feature_maps,\
|
1993 |
+
num_conv_layers=self.num_conv_layers)
|
1994 |
+
|
1995 |
+
def forward(self, x):
|
1996 |
+
dncnn = self.intermediate_dncnn(x)
|
1997 |
+
return dncnn
|
requirements.txt
CHANGED
@@ -1,3 +1,8 @@
|
|
1 |
huggingface_hub
|
2 |
-
|
|
|
3 |
pillow
|
|
|
|
|
|
|
|
|
|
1 |
huggingface_hub
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
pillow
|
5 |
+
scikit-image
|
6 |
+
opencv-python
|
7 |
+
numpy
|
8 |
+
matplotlib
|