Spaces:
Runtime error
Runtime error
charlesnchr
commited on
Commit
•
ba9a83a
1
Parent(s):
32cfd33
First commit, test
Browse files- app.py +99 -0
- examples/dogcat.jpeg +0 -0
- requirements.txt +3 -0
- tf_model.h5 +3 -0
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
''' ----------------------------------------
|
2 |
+
* Creation Time : Sun Aug 28 21:38:58 2022
|
3 |
+
* Last Modified : Sun Aug 28 21:41:36 2022
|
4 |
+
* Author : Charles N. Christensen
|
5 |
+
* Github : github.com/charlesnchr
|
6 |
+
----------------------------------------'''
|
7 |
+
|
8 |
+
from turtle import title
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import from_pretrained_keras
|
11 |
+
import tensorflow as tf
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import io
|
15 |
+
import base64
|
16 |
+
|
17 |
+
|
18 |
+
model = tf.keras.models.load_model("./tf_model.h5")
|
19 |
+
|
20 |
+
|
21 |
+
def predict(image):
|
22 |
+
img = np.array(image)
|
23 |
+
original_shape = img.shape[:2]
|
24 |
+
|
25 |
+
im = tf.image.resize(img, (128, 128))
|
26 |
+
im = tf.cast(im, tf.float32) / 255.0
|
27 |
+
pred_mask = model.predict(im[tf.newaxis, ...])
|
28 |
+
|
29 |
+
|
30 |
+
# take the best performing class for each pixel
|
31 |
+
# the output of argmax looks like this [[1, 2, 0], ...]
|
32 |
+
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
33 |
+
|
34 |
+
|
35 |
+
# convert the prediction mask into binary masks for each class
|
36 |
+
binary_masks = {}
|
37 |
+
|
38 |
+
# when we take tf.argmax() over pred_mask, it becomes a tensor object
|
39 |
+
# the shape becomes TensorShape object, looking like this TensorShape([128])
|
40 |
+
# we need to take get shape, convert to list and take the best one
|
41 |
+
|
42 |
+
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
|
43 |
+
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
|
44 |
+
|
45 |
+
for cls in range(pred_mask.shape[-1]):
|
46 |
+
|
47 |
+
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
|
48 |
+
|
49 |
+
for row in range(rows):
|
50 |
+
|
51 |
+
for col in range(cols):
|
52 |
+
|
53 |
+
if pred_mask_arg[0][row][col] == cls:
|
54 |
+
|
55 |
+
binary_masks[f"mask_{cls}"][row][col] = 1
|
56 |
+
else:
|
57 |
+
binary_masks[f"mask_{cls}"][row][col] = 0
|
58 |
+
|
59 |
+
mask = binary_masks[f"mask_{cls}"]
|
60 |
+
mask *= 255
|
61 |
+
|
62 |
+
mask = np.array(Image.fromarray(mask).convert("L"))
|
63 |
+
mask = tf.image.resize(mask[..., tf.newaxis], original_shape)
|
64 |
+
mask = tf.cast(mask, tf.uint8)
|
65 |
+
mask = mask.numpy().squeeze()
|
66 |
+
|
67 |
+
return mask
|
68 |
+
|
69 |
+
|
70 |
+
title = '<h1 style="text-align: center;">Segment Pets</h1>'
|
71 |
+
|
72 |
+
description = """
|
73 |
+
## About
|
74 |
+
This space demonstrates the use of a semantic segmentation model to segment pets and classify them
|
75 |
+
according to the pixels.
|
76 |
+
## 🚀 To run
|
77 |
+
Upload a pet image and hit submit or select one from the given examples
|
78 |
+
"""
|
79 |
+
|
80 |
+
inputs = gr.inputs.Image(label="Upload a pet image", type = 'pil', optional=False)
|
81 |
+
outputs = [
|
82 |
+
gr.outputs.Image(label="Segmentation")
|
83 |
+
# , gr.outputs.Textbox(type="auto",label="Pet Prediction")
|
84 |
+
]
|
85 |
+
|
86 |
+
examples = [
|
87 |
+
"./examples/dogcat.jpeg",
|
88 |
+
]
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
interface = gr.Interface(fn=predict,
|
93 |
+
inputs=inputs,
|
94 |
+
outputs=outputs,
|
95 |
+
title = title,
|
96 |
+
description=description,
|
97 |
+
examples=examples
|
98 |
+
)
|
99 |
+
interface.launch()
|
examples/dogcat.jpeg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
tensorflow
|
3 |
+
pillow
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0258ea75c11d977fae78f747902e48541c5e6996d3d5c700175454ffeb42aa0f
|
3 |
+
size 63661584
|