File size: 10,931 Bytes
b899ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922800
b899ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6173bc
 
 
 
 
b899ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b899ae9
1922800
b899ae9
1922800
b899ae9
1922800
b899ae9
 
 
 
 
 
 
 
 
f6173bc
 
 
b899ae9
f6173bc
 
 
b899ae9
 
 
 
 
f6173bc
b899ae9
 
 
 
 
 
f6173bc
b899ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6173bc
b899ae9
 
 
 
 
f6173bc
b899ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
""" ----------------------------------------
* Creation Time : Tue Jun 13 14:18:20 2023
* Author : Charles N. Christensen
* Github : github.com/charlesnchr
----------------------------------------"""

import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
from skimage import io
import tifffile as tiff
import os


# Function to draw a rectangle given four points
def draw_rectangle(points, ax):
    # Compute the centroid of the points
    centroid = np.mean(points, axis=0)

    # Compute the width and height
    width = np.linalg.norm(points[1] - points[0])
    height = np.linalg.norm(points[2] - points[1])

    # Compute the angle
    angle = np.arctan2(points[1, 1] - points[0, 1], points[1, 0] - points[0, 0])

    # Create the rectangle
    rect = patches.Rectangle(
        centroid,
        width,
        height,
        angle=np.degrees(angle),
        linewidth=1,
        edgecolor="gray",
        facecolor="none",
        transform=ax.transData,
    )

    # Add the rectangle
    ax.add_patch(rect)
    ax.set_aspect("equal")


def draw_rectangle_from_coords(ax, ridx, cidx):
    l = np.sqrt(2) / 2  # unit length
    o = 8  # origin (x,y)

    shift = 1 if ridx % 2 == 0 else 0

    x1 = o - 2 * l * cidx + shift * l
    y1 = o - l * ridx
    x2 = o - l - 2 * l * cidx + shift * l
    y2 = o + l - l * ridx
    x3 = o - 2 * l * cidx + shift * l
    y3 = o + 2 * l - l * ridx
    x4 = o + l - 2 * l * cidx + shift * l
    y4 = o + l - l * ridx

    # apply shift based on row and column

    # Parse points
    points = np.array([x1, y1, x2, y2, x3, y3, x4, y4]).reshape(-1, 2)

    draw_rectangle(points, ax)

    # annotate ridx and cidx in the center of the rectangle
    ax.annotate(
        f"{ridx},{cidx}",
        xy=(x2, (y1 + y3) / 2),
        horizontalalignment="center",
        verticalalignment="center",
        color="orange",
    )

    # return min max x and y
    return (
        min(x1, x2, x3, x4),
        max(x1, x2, x3, x4),
        min(y1, y2, y3, y4),
        max(y1, y2, y3, y4),
    )


def plot_patch(patch):
    fig, ax = plt.subplots()

    bounds_list = []

    # iterate through patch and render if pixel is 1
    for row in range(patch.shape[0]):
        for col in range(patch.shape[1]):
            if patch[row, col] > 100:
                bounds = draw_rectangle_from_coords(ax, row, col)
                print(bounds)
                bounds_list.append(bounds)

    # Get the min and max x and y values
    xmin = min([b[0] for b in bounds_list])
    xmax = max([b[1] for b in bounds_list])
    ymin = min([b[2] for b in bounds_list])
    ymax = max([b[3] for b in bounds_list])

    # Set the limits of the plot
    plt.xlim(xmin - 2, xmax + 1)
    plt.ylim(ymin - 1, ymax + 1)

    return fig, xmin, xmax, ymin, ymax


def DMDPixelTransform(input_img, dmdMapping, xoffset=0, yoffset=0):
    # Initialize an array of zeros with same size as the input image
    transformed_img = np.zeros_like(input_img)

    # Get the dimensions of the input image
    rows, cols = input_img.shape

    # Iterate over the pixels of the input image
    for i in range(rows):
        for j in range(cols):
            # Calculate the new coordinates for the pixel
            ip = i + yoffset
            jp = j + xoffset

            # Apply the dmdMapping transformation if set
            if dmdMapping > 0:
                transformed_i = jp + ip - 2
                transformed_j = (jp - ip + 4) // 2
            else:
                transformed_i = ip
                transformed_j = jp

            # If the new coordinates are within the bounds of the image, copy the pixel value
            if 0 <= transformed_i < rows and 0 <= transformed_j < cols:
                transformed_img[transformed_i, transformed_j] = input_img[i, j]

    # Return the transformed image
    return transformed_img


# Streamlit app
st.title("ONI DMD emulator")

# add author info and context
st.markdown("Charles N. Christensen, ONI — 2023/06/14")


tabs = st.tabs(
    [
        "Basic rendering",
        "Pregenerated pattern with padding",
        "Manual pattern definition",
    ]
)


with tabs[0]:
    st.header("Render DMD layout")
    # Create a new figure
    fig, ax = plt.subplots()

    # streamlit input for number of columns and rows
    cols = st.number_input("Number of columns", min_value=1, max_value=20, value=5)
    rows = st.number_input("Number of rows", min_value=1, max_value=20, value=5)

    bounds_list = []

    for col in range(cols):
        for row in range(rows):
            bounds = draw_rectangle_from_coords(ax, row, col)
            bounds_list.append(bounds)

    # Get the min and max x and y values
    xmin = min([b[0] for b in bounds_list])
    xmax = max([b[1] for b in bounds_list])
    ymin = min([b[2] for b in bounds_list])
    ymax = max([b[3] for b in bounds_list])

    # Set the limits of the plot
    plt.xlim(xmin - 2, xmax + 1)
    plt.ylim(ymin - 1, ymax + 1)

    fig.set_size_inches(cols + 0.5, rows + 0.5)

    st.pyplot(fig)


with tabs[1]:
    st.subheader("Upload pregenerated pattern or use default")
    # upload pattern image
    pattern = st.file_uploader("Upload pattern image", type=["tif", "tiff"])

    # fallback
    if pattern is None:
        option = st.selectbox(
            "Select pattern",
            (
                "patterns_spotSize_2_Nspots_5_dmdMapping_1.tif",
                "patterns_spotSize_5_Nspots_20_dmdMapping_1.tif",
                "patterns_spotSize_1_Nspots_5_dmdMapping_1.tif",
                "patterns_pixelsize_ratio_1_k2_200_func_square_wave_one_third_dmdMapping_1.tif",
                "patterns_pixelsize_ratio_1_k2_200_func_square_wave_one_third_dmdMapping_0.tif",
                "patterns_pixelsize_ratio_1_k2_80_func_square_wave_one_third_dmdMapping_1.tif",
                "patterns_pixelsize_ratio_1_k2_80_func_square_wave_one_third_dmdMapping_0.tif",
                "patterns_pixelsize_ratio_1_k2_20_func_square_wave_one_third_dmdMapping_1.tif",
                "patterns_pixelsize_ratio_1.8_k2_200_func_square_wave_one_third.tif",
                "patterns_pixelsize_ratio_1.8_k2_150_func_square_wave_one_third.tif",
                "patterns_pixelsize_ratio_1.8_k2_110_func_square_wave_one_third.tif",
                "patterns_pixelsize_ratio_1.6_k2_80.tif",
            ),
        )
        cur_dir = os.path.dirname(os.path.abspath(__file__))
        def_pattern = f"{cur_dir}/patterns/{option}"
        img = io.imread(def_pattern)
        st.markdown("""**No pattern uploaded**: Loading selected default image.""")
        st.markdown(
            "Note that `pixelsize_ratio > 1` and `_dmdMapping_0` indicate an assumption of ortholinear grid (no DMD layout correction). The `_dmdMapping_1` patterns are corrected for DMD."
        )
    else:
        print("loading image", pattern)
        img = tiff.imread(pattern)

    st.subheader("Parameters")
    cols = st.columns(2)
    # streamlit number input for padding
    with cols[0]:
        x_padding = st.number_input(
            "Vertical padding", min_value=0, max_value=10, value=0
        )
    with cols[1]:
        y_padding = st.number_input(
            "Horizontal padding", min_value=0, max_value=10, value=0
        )

    # streamlit number input for global offset
    cols = st.columns(2)
    with cols[0]:
        x_offset_img = st.number_input(
            "Vertical image offset (change to test near edges of DMD)",
            min_value=0,
            max_value=30,
            value=10,
        )
    with cols[1]:
        y_offset_img = st.number_input(
            "Horizontal image offset (change to test near edges of DMD)",
            min_value=0,
            max_value=30,
            value=20,
        )

    cols = st.columns(2)
    with cols[0]:
        rows_img = st.number_input(
            "Number of rows", min_value=5, max_value=100, value=20
        )
    with cols[1]:
        cols_img = st.number_input(
            "Number of columns", min_value=5, max_value=100, value=20
        )

    cols = st.columns(2)
    with cols[0]:
        frame_idx = st.number_input(
            "Plot frame index start", min_value=0, max_value=400, value=0
        )
    with cols[1]:
        frame_count = st.number_input(
            "Plot frame index range", min_value=1, max_value=5, value=2
        )

    global_bounds = None

    # plot patches in two frames
    for i in range(frame_idx, frame_idx + frame_count):
        patch = img[
            i,
            y_offset_img : y_offset_img + rows_img,
            x_offset_img : x_offset_img + cols_img,
        ]

        # add 1pixel padding in top to patch
        patch = np.pad(
            patch, ((x_padding, 0), (y_padding, 0)), "constant", constant_values=0
        )

        fig, xmin, xmax, ymin, ymax = plot_patch(patch)

        if global_bounds is None:
            global_bounds = xmin, xmax, ymin, ymax

        xmin, xmax, ymin, ymax = global_bounds
        plt.xlim(xmin - 2, xmax + 1)
        plt.ylim(ymin - 2, ymax + 1)
        fig.set_size_inches(xmax - xmin + 4, ymax - ymin + 4)
        st.subheader(f"Frame {i}")
        st.pyplot(fig)


with tabs[2]:
    # 5x5 array of st checkboxes
    st.subheader("Select pixels to turn on in tilted coordinate system")
    grid = np.zeros((5, 5))
    for i in range(5):
        cols = st.columns(5)
        for j in range(5):
            with cols[j]:
                # set value based on i,j = 0,0 1,0 0,1 1,1

                value = False
                if i == 1 or i == 2:
                    if j == 1 or j == 2:
                        value = True

                grid[i, j] = st.checkbox(f"{i},{j}", value=value, key=f"{i},{j}")
    grid = 255 * grid

    # streamlit number input for global offset
    x_offset = st.number_input(
        "Vertical global offset (change to test near edges of DMD)",
        min_value=0,
        max_value=30,
        value=10,
    )
    y_offset = st.number_input(
        "Horizontal global offset (change to test near edges of DMD)",
        min_value=0,
        max_value=30,
        value=20,
    )

    global_bounds = None

    # plot with offsets of 1px in x and y
    for xoffset in range(0, 2):
        for yoffset in range(0, 2):
            patch = np.zeros((40, 40))
            patch[x_offset : x_offset + 5, y_offset : y_offset + 5] = grid
            patch = DMDPixelTransform(patch, 1, xoffset, yoffset)
            fig, xmin, xmax, ymin, ymax = plot_patch(patch)

            if global_bounds is None:
                global_bounds = xmin, xmax, ymin, ymax

            xmin, xmax, ymin, ymax = global_bounds
            plt.xlim(xmin - 2, xmax + 1)
            plt.ylim(ymin - 2, ymax + 1)
            fig.set_size_inches(xmax - xmin + 4, ymax - ymin + 4)
            st.subheader(f"Frame with offset x={xoffset} and y={yoffset}")
            st.pyplot(fig)