File size: 8,183 Bytes
0fc4c70
 
 
 
 
8cb8695
0fc4c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a6712
0fc4c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a6712
0fc4c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import cv2
import numpy as np
from tqdm import tqdm
from utils import scale_bbox_from_center
import spaces

detect_conditions = [
    "best detection",
    "left most",
    "right most",
    "top most",
    "bottom most",
    "middle",
    "biggest",
    "smallest",
]

swap_options_list = [
    "All Face",
    "Specific Face",
    "Age less than",
    "Age greater than",
    "All Male",
    "All Female",
    "Left Most",
    "Right Most",
    "Top Most",
    "Bottom Most",
    "Middle",
    "Biggest",
    "Smallest",
]

def get_single_face(faces, method="best detection"):
    total_faces = len(faces)
    if total_faces == 1:
        return faces[0]

    print(f"{total_faces} face detected. Using {method} face.")
    if method == "best detection":
        return sorted(faces, key=lambda face: face["det_score"])[-1]
    elif method == "left most":
        return sorted(faces, key=lambda face: face["bbox"][0])[0]
    elif method == "right most":
        return sorted(faces, key=lambda face: face["bbox"][0])[-1]
    elif method == "top most":
        return sorted(faces, key=lambda face: face["bbox"][1])[0]
    elif method == "bottom most":
        return sorted(faces, key=lambda face: face["bbox"][1])[-1]
    elif method == "middle":
        return sorted(faces, key=lambda face: (
                (face["bbox"][0] + face["bbox"][2]) / 2 - 0.5) ** 2 +
                ((face["bbox"][1] + face["bbox"][3]) / 2 - 0.5) ** 2)[len(faces) // 2]
    elif method == "biggest":
        return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[-1]
    elif method == "smallest":
        return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[0]



def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0):
    faces = model.get(image)
    if scale != 1: # landmark-scale
        for i, face in enumerate(faces):
            landmark = face['kps']
            center = np.mean(landmark, axis=0)
            landmark = center + (landmark - center) * scale
            faces[i]['kps'] = landmark

    if not return_single_face:
        return faces

    return get_single_face(faces, method=detect_condition)


def cosine_distance(a, b):
    a /= np.linalg.norm(a)
    b /= np.linalg.norm(b)
    return 1 - np.dot(a, b)



def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition="All face", detect_condition="left most", scale=1.0):
    if swap_condition != "Specific Face":
        source_path, age = source_data
        source_image = cv2.imread(source_path)
        analysed_source = analyse_face(source_image, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
    else:
        analysed_source_specifics = []
        source_specifics, threshold = source_data
        for source, specific in zip(*source_specifics):
            if source is None or specific is None:
                continue
            analysed_source = analyse_face(source, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
            analysed_specific = analyse_face(specific, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
            analysed_source_specifics.append([analysed_source, analysed_specific])

    analysed_target_list = []
    analysed_source_list = []
    whole_frame_eql_list = []
    num_faces_per_frame = []

    total_frames = len(image_sequence)
    curr_idx = 0
    for curr_idx, frame_path in tqdm(enumerate(image_sequence), total=total_frames, desc="Analysing face data"):
        frame = cv2.imread(frame_path)
        analysed_faces = analyse_face(frame, face_analyser, return_single_face=False, detect_condition=detect_condition, scale=scale)

        n_faces = 0
        for analysed_face in analysed_faces:
            if swap_condition == "All Face":
                analysed_target_list.append(analysed_face)
                analysed_source_list.append(analysed_source)
                whole_frame_eql_list.append(frame_path)
                n_faces += 1
            elif swap_condition == "Age less than" and analysed_face["age"] < age:
                analysed_target_list.append(analysed_face)
                analysed_source_list.append(analysed_source)
                whole_frame_eql_list.append(frame_path)
                n_faces += 1
            elif swap_condition == "Age greater than" and analysed_face["age"] > age:
                analysed_target_list.append(analysed_face)
                analysed_source_list.append(analysed_source)
                whole_frame_eql_list.append(frame_path)
                n_faces += 1
            elif swap_condition == "All Male" and analysed_face["gender"] == 1:
                analysed_target_list.append(analysed_face)
                analysed_source_list.append(analysed_source)
                whole_frame_eql_list.append(frame_path)
                n_faces += 1
            elif swap_condition == "All Female" and analysed_face["gender"] == 0:
                analysed_target_list.append(analysed_face)
                analysed_source_list.append(analysed_source)
                whole_frame_eql_list.append(frame_path)
                n_faces += 1
            elif swap_condition == "Specific Face":
                for analysed_source, analysed_specific in analysed_source_specifics:
                    distance = cosine_distance(analysed_specific["embedding"], analysed_face["embedding"])
                    if distance < threshold:
                        analysed_target_list.append(analysed_face)
                        analysed_source_list.append(analysed_source)
                        whole_frame_eql_list.append(frame_path)
                        n_faces += 1

        if swap_condition == "Left Most":
            analysed_face = get_single_face(analysed_faces, method="left most")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Right Most":
            analysed_face = get_single_face(analysed_faces, method="right most")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Top Most":
            analysed_face = get_single_face(analysed_faces, method="top most")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Bottom Most":
            analysed_face = get_single_face(analysed_faces, method="bottom most")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Middle":
            analysed_face = get_single_face(analysed_faces, method="middle")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Biggest":
            analysed_face = get_single_face(analysed_faces, method="biggest")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        elif swap_condition == "Smallest":
            analysed_face = get_single_face(analysed_faces, method="smallest")
            analysed_target_list.append(analysed_face)
            analysed_source_list.append(analysed_source)
            whole_frame_eql_list.append(frame_path)
            n_faces += 1

        num_faces_per_frame.append(n_faces)

    return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame