File size: 7,974 Bytes
6462634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目

"""
    该文件中主要包含三个函数

    不具备多线程能力的函数:
    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

    具备多线程调用能力的函数
    2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
    3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
"""

import json
import gradio as gr
import logging
import traceback
import requests
import importlib

# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
from toolbox import get_conf
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
    get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')

timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'

def get_full_error(chunk, stream_response):
    """
        获取完整的从Openai返回的报错
    """
    while True:
        try:
            chunk += next(stream_response)
        except:
            break
    return chunk

#


def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', 
            stream = True, additional_fn=None):
    """
        发送至chatGPT,流式获取输出。
        用于基础的对话功能。
        inputs 是本次问询的输入
        top_p, temperature是chatGPT的内部调优参数
        history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
        chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
        additional_fn代表点击的哪个按钮,按钮见functional.py
    """
    if additional_fn is not None:
        import functional
        importlib.reload(functional)    # 热更新prompt
        functional = functional.get_functionals()
        if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs)  # 获取预处理函数(如果有的话)
        inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]

    if stream:
        raw_input = inputs
        logging.info(f'[raw_input] {raw_input}')
        chatbot.append((inputs, ""))
        yield chatbot, history, "等待响应"

    headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
    history.append(inputs); history.append(" ")

    retry = 0
    while True:
        try:
            # make a POST request to the API endpoint, stream=True
            response = requests.post(API_URL, headers=headers, proxies=proxies,
                                    json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
        except:
            retry += 1
            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
            yield chatbot, history, "请求超时"+retry_msg
            if retry > MAX_RETRY: raise TimeoutError

    gpt_replying_buffer = ""
    
    is_head_of_the_stream = True
    if stream:
        stream_response =  response.iter_lines()
        while True:
            chunk = next(stream_response)
            # print(chunk.decode()[6:])
            if is_head_of_the_stream:
                # 数据流的第一帧不携带content
                is_head_of_the_stream = False; continue
            
            if chunk:
                try:
                    if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
                        # 判定为数据流的结束,gpt_replying_buffer也写完了
                        logging.info(f'[response] {gpt_replying_buffer}')
                        break
                    # 处理数据流的主体
                    chunkjson = json.loads(chunk.decode()[6:])
                    status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
                    # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
                    gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
                    history[-1] = gpt_replying_buffer
                    chatbot[-1] = (history[-2], history[-1])
                    yield chatbot, history, status_text

                except Exception as e:
                    traceback.print_exc()
                    yield chatbot, history, "Json解析不合常规"
                    chunk = get_full_error(chunk, stream_response)
                    error_msg = chunk.decode()
                    if "reduce the length" in error_msg:
                        chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.")
                        history = []    # 清除历史
                    elif "Incorrect API key" in error_msg:
                        chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.")
                    elif "exceeded your current quota" in error_msg:
                        chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由,拒绝服务.")
                    else:
                        from toolbox import regular_txt_to_markdown
                        tb_str = '```\n' + traceback.format_exc() + '```'
                        chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
                    yield chatbot, history, "Json异常" + error_msg
                    return

def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
    """
        整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
    """
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}"
    }

    conversation_cnt = len(history) // 2

    messages = [{"role": "system", "content": system_prompt}]
    if conversation_cnt:
        for index in range(0, 2*conversation_cnt, 2):
            what_i_have_asked = {}
            what_i_have_asked["role"] = "user"
            what_i_have_asked["content"] = history[index]
            what_gpt_answer = {}
            what_gpt_answer["role"] = "assistant"
            what_gpt_answer["content"] = history[index+1]
            if what_i_have_asked["content"] != "":
                if what_gpt_answer["content"] == "": continue
                if what_gpt_answer["content"] == timeout_bot_msg: continue
                messages.append(what_i_have_asked)
                messages.append(what_gpt_answer)
            else:
                messages[-1]['content'] = what_gpt_answer['content']

    what_i_ask_now = {}
    what_i_ask_now["role"] = "user"
    what_i_ask_now["content"] = inputs
    messages.append(what_i_ask_now)

    payload = {
        "model": LLM_MODEL,
        "messages": messages, 
        "temperature": temperature,  # 1.0,
        "top_p": top_p,  # 1.0,
        "n": 1,
        "stream": stream,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    
    print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
    return headers,payload