Spaces:
Sleeping
Sleeping
File size: 1,639 Bytes
0d32d53 135d31c e94efa0 135d31c e94efa0 d87df45 0d32d53 d87df45 6ada2c7 d87df45 1f4fa87 d87df45 caf9a86 1e3dfee 7c54130 d87df45 1e3dfee d87df45 6008614 d87df45 0d32d53 2d91155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from openai import AsyncOpenAI
base_url = "http://127.0.0.1:8080/v1"
client = AsyncOpenAI(base_url=base_url, api_key="-")
"""
frequency_penalty: Optional[float] = None,
logit_bias: Optional[List[float]] = None,
logprobs: Optional[bool] = None,
top_logprobs: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
stream: bool = False,
seed: Optional[int] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
tools: Optional[List[Tool]] = None,
tool_choice: Optional[str] = None,
"""
def _default_parameters():
return {
"max_tokens": 256,
"stream": True,
"temperature": 0.9,
}
def _translate_messages(history):
messages = []
for conv in history:
messages.append({"role":"user", "content":conv[0]})
messages.append({"role":"assistant", "content":conv[1]})
return messages
async def echo(message, history):
parameters = _default_parameters()
messages = _translate_messages(history)
messages.append({"role":"user", "content":message})
responses = await client.chat.completions.create(
model="tgi", messages=messages, **parameters
)
full_resp = ""
async for resp in responses:
full_resp = full_resp + resp.choices[0].delta.content
yield full_resp
demo = gr.ChatInterface(
fn=echo,
examples=["hello", "how are you?", "What is Large Language Model?"],
title="Space of Gradio ➕ Text Generation Inference",
multimodal=False
)
demo.queue().launch(server_name="0.0.0.0", server_port=3000) |