Spaces:
Running
Running
File size: 1,569 Bytes
80a1334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
from dotenv import load_dotenv
import google.generativeai as genai
load_dotenv()
def generate_flux_optimized():
api_key = os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-flash-preview-05-20')
prompt = """
Generate optimized Python code for running FLUX.1-schnell diffusion model on Apple Silicon (MPS) hardware.
Requirements:
- Use FluxPipeline from diffusers library
- Model: "black-forest-labs/FLUX.1-schnell"
- Target device: MPS (Apple Silicon)
- Image size: 768x1360
- Inference steps: 4
- Prompt: "A cat holding a sign that says hello world"
Apply these Apple Silicon optimizations:
1. Use torch.bfloat16 (better than float16 for MPS)
2. Enable attention slicing and VAE slicing for memory efficiency
3. Use guidance_scale=0.0 for FLUX.1-schnell
4. Add max_sequence_length=256 for memory optimization
5. Include proper error handling
6. Add torch.inference_mode() for speed
Generate ONLY Python code without markdown formatting.
"""
try:
response = model.generate_content(prompt)
code = response.text.strip()
# Clean up any markdown formatting
if code.startswith('```python'):
code = code[9:]
if code.endswith('```'):
code = code[:-3]
print("FLUX-Optimized Code for Apple Silicon:")
print("=" * 50)
print(code)
print("=" * 50)
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
generate_flux_optimized() |