Spaces:
Runtime error
Runtime error
File size: 6,892 Bytes
88f55d9 506f770 88f55d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gc
import yaml
import json
import torch
from transformers import GenerationConfig
from models import alpaca, stablelm, koalpaca, flan_alpaca, mpt
from models import camel, t5_vicuna, vicuna, starchat, redpajama, bloom
from models import baize, guanaco, falcon, kullm, replit, airoboros
from models import samantha_vicuna
from utils import get_chat_interface, get_chat_manager
model_infos = json.load(open("model_cards.json"))
def get_model_type(model_info):
base_url = model_info["hub(base)"]
ft_ckpt_url = model_info["hub(ckpt)"]
model_type_tmp = "alpaca"
if "llms/wizardlm" in base_url.lower():
model_type_tmp = "wizardlm"
elif "chronos" in base_url.lower():
model_type_tmp = "chronos"
elif "lazarus" in base_url.lower():
model_type_tmp = "lazarus"
elif "samantha" in base_url.lower():
model_type_tmp = "samantha-vicuna"
elif "airoboros" in base_url.lower():
model_type_tmp = "airoboros"
elif "replit" in base_url.lower():
model_type_tmp = "replit-instruct"
elif "kullm" in base_url.lower():
model_type_tmp = "kullm-polyglot"
elif "nous-hermes" in base_url.lower():
model_type_tmp = "nous-hermes"
elif "guanaco" in base_url.lower():
model_type_tmp = "guanaco"
elif "wizardlm-uncensored-falcon" in base_url.lower():
model_type_tmp = "wizard-falcon"
elif "falcon" in base_url.lower():
model_type_tmp = "falcon"
elif "baize" in base_url.lower():
model_type_tmp = "baize"
elif "stable-vicuna" in base_url.lower():
model_type_tmp = "stable-vicuna"
elif "vicuna" in base_url.lower():
model_type_tmp = "vicuna"
elif "mpt" in base_url.lower():
model_type_tmp = "mpt"
elif "redpajama-incite-7b-instruct" in base_url.lower():
model_type_tmp = "redpajama-instruct"
elif "redpajama" in base_url.lower():
model_type_tmp = "redpajama"
elif "starchat" in base_url.lower():
model_type_tmp = "starchat"
elif "camel" in base_url.lower():
model_type_tmp = "camel"
elif "flan-alpaca" in base_url.lower():
model_type_tmp = "flan-alpaca"
elif "openassistant/stablelm" in base_url.lower():
model_type_tmp = "os-stablelm"
elif "stablelm" in base_url.lower():
model_type_tmp = "stablelm"
elif "fastchat-t5" in base_url.lower():
model_type_tmp = "t5-vicuna"
elif "koalpaca-polyglot" in base_url.lower():
model_type_tmp = "koalpaca-polyglot"
elif "alpacagpt4" in ft_ckpt_url.lower():
model_type_tmp = "alpaca-gpt4"
elif "alpaca" in ft_ckpt_url.lower():
model_type_tmp = "alpaca"
elif "llama-deus" in ft_ckpt_url.lower():
model_type_tmp = "llama-deus"
elif "vicuna-lora-evolinstruct" in ft_ckpt_url.lower():
model_type_tmp = "evolinstruct-vicuna"
elif "alpacoom" in ft_ckpt_url.lower():
model_type_tmp = "alpacoom"
elif "guanaco" in ft_ckpt_url.lower():
model_type_tmp = "guanaco"
else:
print("unsupported model type")
return model_type_tmp
def initialize_globals():
global models, tokenizers
models = []
model_names = [
"baize-7b",
# "evolinstruct-vicuna-13b",
"guanaco-7b",
# "nous-hermes-13b"
]
for model_name in model_names:
model_info = model_infos[model_name]
model_thumbnail_tiny = model_info["thumb-tiny"]
model_type = get_model_type(model_info)
print(model_type)
load_model = get_load_model(model_type)
model, tokenizer = load_model(
base=model_info["hub(base)"],
finetuned=model_info["hub(ckpt)"],
mode_cpu=False,
mode_mps=False,
mode_full_gpu=False,
mode_8bit=True,
mode_4bit=True,
force_download_ckpt=False
)
gen_config, gen_config_raw = get_generation_config(
model_info["default_gen_config"]
)
models.append(
{
"model_name": model_name,
"model_thumb_tiny": model_thumbnail_tiny,
"model_type": model_type,
"model": model,
"tokenizer": tokenizer,
"gen_config": gen_config,
"gen_config_raw": gen_config_raw,
"chat_interface": get_chat_interface(model_type),
"chat_manager": get_chat_manager(model_type),
}
)
def get_load_model(model_type):
if model_type == "alpaca" or \
model_type == "alpaca-gpt4" or \
model_type == "llama-deus" or \
model_type == "nous-hermes" or \
model_type == "lazarus" or \
model_type == "chronos" or \
model_type == "wizardlm":
return alpaca.load_model
elif model_type == "stablelm" or model_type == "os-stablelm":
return stablelm.load_model
elif model_type == "koalpaca-polyglot":
return koalpaca.load_model
elif model_type == "kullm-polyglot":
return kullm.load_model
elif model_type == "flan-alpaca":
return flan_alpaca.load_model
elif model_type == "camel":
return camel.load_model
elif model_type == "t5-vicuna":
return t5_vicuna.load_model
elif model_type == "stable-vicuna":
return vicuna.load_model
elif model_type == "starchat":
return starchat.load_model
elif model_type == "mpt":
return mpt.load_model
elif model_type == "redpajama" or \
model_type == "redpajama-instruct":
return redpajama.load_model
elif model_type == "vicuna":
return vicuna.load_model
elif model_type == "evolinstruct-vicuna":
return alpaca.load_model
elif model_type == "alpacoom":
return bloom.load_model
elif model_type == "baize":
return baize.load_model
elif model_type == "guanaco":
return guanaco.load_model
elif model_type == "falcon" or model_type == "wizard-falcon":
return falcon.load_model
elif model_type == "replit-instruct":
return replit.load_model
elif model_type == "airoboros":
return airoboros.load_model
elif model_type == "samantha-vicuna":
return samantha_vicuna.load_model
else:
return None
def get_generation_config(path):
with open(path, 'rb') as f:
generation_config = yaml.safe_load(f.read())
generation_config = generation_config["generation_config"]
return GenerationConfig(**generation_config), generation_config
def get_constraints_config(path):
with open(path, 'rb') as f:
constraints_config = yaml.safe_load(f.read())
return ConstraintsConfig(**constraints_config), constraints_config["constraints"]
|