Spaces:
Runtime error
Runtime error
File size: 11,327 Bytes
27bf1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import numpy as np
import pandas as pd
import pickle
import tqdm
import os
from utils import get_label, extract_feature, get_first_letters
from collections import defaultdict
class AudioExtractor:
"""A class that is used to featurize audio clips, and provide
them to the machine learning algorithms for training and testing"""
def __init__(self, audio_config=None, verbose=1, features_folder_name="features", classification=True,
emotions=['sad', 'neutral', 'happy'], balance=True):
"""
Params:
audio_config (dict): the dictionary that indicates what features to extract from the audio file,
default is {'mfcc': True, 'chroma': True, 'mel': True, 'contrast': False, 'tonnetz': False}
(i.e mfcc, chroma and mel)
verbose (bool/int): verbosity level, 0 for silence, 1 for info, default is 1
features_folder_name (str): the folder to store output features extracted, default is "features".
classification (bool): whether it is a classification or regression, default is True (i.e classification)
emotions (list): list of emotions to be extracted, default is ['sad', 'neutral', 'happy']
balance (bool): whether to balance dataset (both training and testing), default is True
"""
self.audio_config = audio_config if audio_config else {'mfcc': True, 'chroma': True, 'mel': True, 'contrast': False, 'tonnetz': False}
self.verbose = verbose
self.features_folder_name = features_folder_name
self.classification = classification
self.emotions = emotions
self.balance = balance
# input dimension
self.input_dimension = None
def _load_data(self, desc_files, partition, shuffle):
self.load_metadata_from_desc_file(desc_files, partition)
# balancing the datasets ( both training or testing )
if partition == "train" and self.balance:
self.balance_training_data()
elif partition == "test" and self.balance:
self.balance_testing_data()
else:
if self.balance:
raise TypeError("Invalid partition, must be either train/test")
if shuffle:
self.shuffle_data_by_partition(partition)
def load_train_data(self, desc_files=["train_speech.csv"], shuffle=False):
"""Loads training data from the metadata files `desc_files`"""
self._load_data(desc_files, "train", shuffle)
def load_test_data(self, desc_files=["test_speech.csv"], shuffle=False):
"""Loads testing data from the metadata files `desc_files`"""
self._load_data(desc_files, "test", shuffle)
def shuffle_data_by_partition(self, partition):
if partition == "train":
self.train_audio_paths, self.train_emotions, self.train_features = shuffle_data(self.train_audio_paths,
self.train_emotions, self.train_features)
elif partition == "test":
self.test_audio_paths, self.test_emotions, self.test_features = shuffle_data(self.test_audio_paths,
self.test_emotions, self.test_features)
else:
raise TypeError("Invalid partition, must be either train/test")
def load_metadata_from_desc_file(self, desc_files, partition):
"""Read metadata from a CSV file & Extract and loads features of audio files
Params:
desc_files (list): list of description files (csv files) to read from
partition (str): whether is "train" or "test"
"""
# empty dataframe
df = pd.DataFrame({'path': [], 'emotion': []})
for desc_file in desc_files:
# concat dataframes
df = pd.concat((df, pd.read_csv(desc_file)), sort=False)
if self.verbose:
print("[*] Loading audio file paths and its corresponding labels...")
# get columns
audio_paths, emotions = list(df['path']), list(df['emotion'])
# if not classification, convert emotions to numbers
if not self.classification:
# so naive and need to be implemented
# in a better way
if len(self.emotions) == 3:
self.categories = {'sad': 1, 'neutral': 2, 'happy': 3}
elif len(self.emotions) == 5:
self.categories = {'angry': 1, 'sad': 2, 'neutral': 3, 'ps': 4, 'happy': 5}
else:
raise TypeError("Regression is only for either ['sad', 'neutral', 'happy'] or ['angry', 'sad', 'neutral', 'ps', 'happy']")
emotions = [ self.categories[e] for e in emotions ]
# make features folder if does not exist
if not os.path.isdir(self.features_folder_name):
os.mkdir(self.features_folder_name)
# get label for features
label = get_label(self.audio_config)
# construct features file name
n_samples = len(audio_paths)
first_letters = get_first_letters(self.emotions)
name = os.path.join(self.features_folder_name, f"{partition}_{label}_{first_letters}_{n_samples}.npy")
if os.path.isfile(name):
# if file already exists, just load then
if self.verbose:
print("[+] Feature file already exists, loading...")
features = np.load(name)
else:
# file does not exist, extract those features and dump them into the file
features = []
append = features.append
for audio_file in tqdm.tqdm(audio_paths, f"Extracting features for {partition}"):
feature = extract_feature(audio_file, **self.audio_config)
if self.input_dimension is None:
self.input_dimension = feature.shape[0]
append(feature)
# convert to numpy array
features = np.array(features)
# save it
np.save(name, features)
if partition == "train":
try:
self.train_audio_paths
except AttributeError:
self.train_audio_paths = audio_paths
self.train_emotions = emotions
self.train_features = features
else:
if self.verbose:
print("[*] Adding additional training samples")
self.train_audio_paths += audio_paths
self.train_emotions += emotions
self.train_features = np.vstack((self.train_features, features))
elif partition == "test":
try:
self.test_audio_paths
except AttributeError:
self.test_audio_paths = audio_paths
self.test_emotions = emotions
self.test_features = features
else:
if self.verbose:
print("[*] Adding additional testing samples")
self.test_audio_paths += audio_paths
self.test_emotions += emotions
self.test_features = np.vstack((self.test_features, features))
else:
raise TypeError("Invalid partition, must be either train/test")
def _balance_data(self, partition):
if partition == "train":
emotions = self.train_emotions
features = self.train_features
audio_paths = self.train_audio_paths
elif partition == "test":
emotions = self.test_emotions
features = self.test_features
audio_paths = self.test_audio_paths
else:
raise TypeError("Invalid partition, must be either train/test")
count = []
if self.classification:
for emotion in self.emotions:
count.append(len([ e for e in emotions if e == emotion]))
else:
# regression, take actual numbers, not label emotion
for emotion in self.categories.values():
count.append(len([ e for e in emotions if e == emotion]))
# get the minimum data samples to balance to
minimum = min(count)
if minimum == 0:
# won't balance, otherwise 0 samples will be loaded
print("[!] One class has 0 samples, setting balance to False")
self.balance = False
return
if self.verbose:
print("[*] Balancing the dataset to the minimum value:", minimum)
d = defaultdict(list)
if self.classification:
counter = {e: 0 for e in self.emotions }
else:
counter = { e: 0 for e in self.categories.values() }
for emotion, feature, audio_path in zip(emotions, features, audio_paths):
if counter[emotion] >= minimum:
# minimum value exceeded
continue
counter[emotion] += 1
d[emotion].append((feature, audio_path))
emotions, features, audio_paths = [], [], []
for emotion, features_audio_paths in d.items():
for feature, audio_path in features_audio_paths:
emotions.append(emotion)
features.append(feature)
audio_paths.append(audio_path)
if partition == "train":
self.train_emotions = emotions
self.train_features = features
self.train_audio_paths = audio_paths
elif partition == "test":
self.test_emotions = emotions
self.test_features = features
self.test_audio_paths = audio_paths
else:
raise TypeError("Invalid partition, must be either train/test")
def balance_training_data(self):
self._balance_data("train")
def balance_testing_data(self):
self._balance_data("test")
def shuffle_data(audio_paths, emotions, features):
""" Shuffle the data (called after making a complete pass through
training or validation data during the training process)
Params:
audio_paths (list): Paths to audio clips
emotions (list): Emotions in each audio clip
features (list): features audio clips
"""
p = np.random.permutation(len(audio_paths))
audio_paths = [audio_paths[i] for i in p]
emotions = [emotions[i] for i in p]
features = [features[i] for i in p]
return audio_paths, emotions, features
def load_data(train_desc_files, test_desc_files, audio_config=None, classification=True, shuffle=True,
balance=True, emotions=['sad', 'neutral', 'happy']):
# instantiate the class
audiogen = AudioExtractor(audio_config=audio_config, classification=classification, emotions=emotions,
balance=balance, verbose=0)
# Loads training data
audiogen.load_train_data(train_desc_files, shuffle=shuffle)
# Loads testing data
audiogen.load_test_data(test_desc_files, shuffle=shuffle)
# X_train, X_test, y_train, y_test
return {
"X_train": np.array(audiogen.train_features),
"X_test": np.array(audiogen.test_features),
"y_train": np.array(audiogen.train_emotions),
"y_test": np.array(audiogen.test_emotions),
"train_audio_paths": audiogen.train_audio_paths,
"test_audio_paths": audiogen.test_audio_paths,
"balance": audiogen.balance,
} |