Spaces:
Running
Running
File size: 4,083 Bytes
7405474 3e269ec 7405474 3e269ec 7405474 0a4227c 6dd2090 7405474 5398274 7405474 3e269ec 5a9370b 2d94c1e 3e269ec 7405474 5398274 7405474 5398274 7405474 756b14b 0fa01ec 2d94c1e 5398274 2d94c1e 5398274 7405474 5398274 7405474 3e269ec 7405474 3e269ec 7405474 3e269ec 5398274 2d94c1e 7405474 5398274 0a4227c 6dd2090 0a4227c 6dd2090 0a4227c 6dd2090 0a4227c 6dd2090 0a4227c 6dd2090 0a4227c 6dd2090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
import os
from pathlib import Path
from PIL import Image
from rag_sec.document_search_system import DocumentSearchSystem
from chainguard.blockchain_logger import BlockchainLogger
from rag_sec.document_search_system import main
import streamlit as st
from rag_sec.document_retriver import DocumentRetriever
# Blockchain Logger
blockchain_logger = BlockchainLogger()
# Initialize DocumentSearchSystem
home_dir = Path(os.getenv("HOME", "/"))
data_dir = home_dir / "data-sets/aclImdb/train"
system = DocumentSearchSystem(
neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
neo4j_user="neo4j",
neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
)
system.retriever.load_documents()
# Directory for storing uploaded files
UPLOAD_DIR = "uploaded_files"
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Streamlit Layout
st.title("Memora: Secure File Upload with Blockchain & Neo4j")
st.subheader("Securely upload, organize, and query your files")
# File Upload
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi'])
if uploaded_files:
for uploaded_file in uploaded_files:
# Save file locally
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"File saved locally: {file_path}")
# Display file details
if uploaded_file.type.startswith('image'):
image = Image.open(uploaded_file)
st.image(image, caption=uploaded_file.name, use_column_width=True)
# Metadata Input
album = st.text_input(f"Album for {uploaded_file.name}", "Default Album")
tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "")
# Log Metadata
if st.button(f"Log Metadata for {uploaded_file.name}"):
metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album}
blockchain_details = blockchain_logger.log_data(metadata)
blockchain_hash = blockchain_details.get("block_hash", "N/A")
# Use Neo4jHandler from DocumentSearchSystem to log transaction
system.neo4j_handler.log_transaction(uploaded_file.name, file_path, blockchain_hash)
st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}")
# Blockchain Integrity Validation
if st.button("Validate Blockchain Integrity"):
is_valid = blockchain_logger.is_blockchain_valid()
st.write("Blockchain Integrity:", "Valid β
" if is_valid else "Invalid β")
# Query System
st.subheader("Query Files")
# Initialize DocumentRetriever
retriever = DocumentRetriever()
@st.cache(allow_output_mutation=True)
def load_retriever():
"""Load documents into the retriever."""
retriever.load_documents()
return retriever
# Load the retriever and documents
st.write("Loading documents...")
retriever = load_retriever()
st.write("Documents successfully loaded!")
# Streamlit UI
st.title("Document Search App")
st.subheader("Enter a query to search for related documents")
# Query Input
query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')")
if st.button("Search"):
if query:
# Retrieve documents
results = retriever.retrieve(query)
if results == ["Document retrieval is not initialized."]:
st.error("Document retrieval is not initialized. Please reload the app.")
elif not results:
st.warning("No relevant documents found for your query.")
else:
st.success(f"Found {len(results)} relevant document(s).")
for idx, doc in enumerate(results, start=1):
st.write(f"### Document {idx}")
st.write(doc[:500]) # Display first 500 characters of each document
else:
st.warning("Please enter a query to search.")
# Debugging Section
if st.checkbox("Show Debug Information"):
st.write(f"Total documents loaded: {len(retriever.documents)}")
|