Spaces:
Running
Running
File size: 6,562 Bytes
7405474 a463e6e 1b7191e 3e269ec 7405474 1b7191e 7405474 5398274 7405474 3e269ec 759c15a 1b7191e 759c15a 8ce7f13 759c15a 7405474 1b7191e 5398274 1b7191e 7405474 8ce7f13 1b7191e a463e6e 1b7191e 8ce7f13 1b7191e 8ce7f13 1b7191e 6dd2090 8ce7f13 6dd2090 759c15a 6dd2090 759c15a 0a4227c 6dd2090 759c15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import streamlit as st
import os
from pathlib import Path
from PIL import Image
from rag_sec.document_search_system import DocumentSearchSystem
from chainguard.blockchain_logger import BlockchainLogger
import requests
import pandas as pd
# SerpAPI Key (Replace with your SerpAPI key)
SERPAPI_KEY = "your_serpapi_api_key"
# Blockchain Logger
blockchain_logger = BlockchainLogger()
# Initialize DocumentSearchSystem
@st.cache_resource
def initialize_system():
"""Initialize the DocumentSearchSystem and load documents."""
home_dir = Path(os.getenv("HOME", "/"))
system = DocumentSearchSystem(
neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
neo4j_user="neo4j",
neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
)
system.retriever.load_documents()
return system
# Initialize the system
system = initialize_system()
# Function to Fetch News from SerpAPI
def fetch_news(query, num_results=5):
"""Fetch search results using SerpAPI."""
url = "https://serpapi.com/search"
params = {
"engine": "google",
"q": query,
"api_key": SERPAPI_KEY,
"num": num_results
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
search_results = response.json().get("organic_results", [])
return [{"title": result["title"], "link": result["link"]} for result in search_results]
except Exception as e:
return [{"error": f"An error occurred: {str(e)}"}]
# Mock User Information (Replace with actual Google Login integration if needed)
def get_user_info():
"""Fetch or mock user details."""
return {"name": "Talex Maxim", "email": "taimax13@gmail.com"} # Replace with dynamic user info
# Directory for storing uploaded files
UPLOAD_DIR = "uploaded_files"
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Streamlit Layout
st.title("Memora: Advanced File Upload and News Insights")
st.subheader("Securely upload, organize, and query your files while staying informed.")
# User-Specific Information
user_info = get_user_info()
if user_info:
st.sidebar.write("### Logged in as:")
st.sidebar.write(f"**Name:** {user_info['name']}")
st.sidebar.write(f"**Email:** {user_info['email']}")
else:
st.sidebar.write("### Not Logged In")
st.sidebar.write("We invite you on the journey! Please log in with your Google account.")
# Google Search: User-Specific News
if user_info:
st.subheader("1. Latest News About You")
user_name = user_info["name"]
st.write(f"Fetching latest news for **{user_name}**...")
user_news = fetch_news(user_name, num_results=5)
if user_news and "error" not in user_news[0]:
st.success(f"Top {len(user_news)} results for '{user_name}':")
user_news_df = pd.DataFrame(user_news)
st.dataframe(user_news_df)
else:
st.error(user_news[0].get("error", "No news found."))
else:
st.warning("Please log in with your Google account to fetch personalized news.")
# Google Search: Global News Categories
st.subheader("2. Global News Insights")
categories = ["Technology", "Sports", "Politics", "Entertainment", "Science"]
for category in categories:
st.write(f"Fetching news for **{category}**...")
category_results = fetch_news(f"latest {category} news", num_results=3)
if category_results and "error" not in category_results[0]:
st.success(f"Top {len(category_results)} results for '{category}':")
for idx, result in enumerate(category_results, start=1):
st.write(f"{idx}. [{result['title']}]({result['link']})")
else:
st.error(category_results[0].get("error", "No news found."))
# File Upload Section
st.subheader("3. Upload and Organize Files")
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi'])
if uploaded_files:
for uploaded_file in uploaded_files:
# Save file locally
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"File saved locally: {file_path}")
# Display file details
if uploaded_file.type.startswith('image'):
image = Image.open(uploaded_file)
st.image(image, caption=uploaded_file.name, use_column_width=True)
# Metadata Input
album = st.text_input(f"Album for {uploaded_file.name}", "Default Album")
tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "")
# Log Metadata
if st.button(f"Log Metadata for {uploaded_file.name}"):
metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album}
blockchain_details = blockchain_logger.log_data(metadata)
blockchain_hash = blockchain_details.get("block_hash", "N/A")
# Use Neo4jHandler from DocumentSearchSystem to log transaction
system.neo4j_handler.log_relationships(uploaded_file.name, album, blockchain_hash, [])
st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}")
# Blockchain Integrity Validation
if st.button("Validate Blockchain Integrity"):
is_valid = blockchain_logger.is_blockchain_valid()
st.write("Blockchain Integrity:", "Valid β
" if is_valid else "Invalid β")
# Query System
st.subheader("4. Search Documents")
query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')")
if st.button("Search Documents"):
if query:
result = system.process_query(query)
if result["status"] == "success":
st.success(f"Query processed successfully!")
st.write("### Query Response:")
st.write(result["response"])
st.write("### Retrieved Documents:")
for idx, doc in enumerate(result["retrieved_documents"], start=1):
st.write(f"**Document {idx}:**")
st.write(doc[:500]) # Display the first 500 characters
st.write("### Blockchain Details:")
st.json(result["blockchain_details"])
elif result["status"] == "no_results":
st.warning("No relevant documents found for your query.")
elif result["status"] == "rejected":
st.error(result["message"])
else:
st.warning("Please enter a query to search.")
# Debugging Section
if st.checkbox("Show Debug Information"):
st.write(f"Total documents loaded: {len(system.retriever.documents)}")
|