File size: 68,925 Bytes
8fd238c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
"""The main Client class for the Python client."""

from __future__ import annotations

import concurrent.futures
import hashlib
import json
import math
import os
import re
import secrets
import shutil
import tempfile
import threading
import time
import urllib.parse
import uuid
import warnings
from concurrent.futures import Future
from dataclasses import dataclass
from datetime import datetime
from functools import partial
from pathlib import Path
from threading import Lock
from typing import Any, Callable, Literal

import httpx
import huggingface_hub
from huggingface_hub import CommitOperationAdd, SpaceHardware, SpaceStage
from huggingface_hub.utils import (
    RepositoryNotFoundError,
    build_hf_headers,
    send_telemetry,
)
from packaging import version

from gradio_client import utils
from gradio_client.compatibility import EndpointV3Compatibility
from gradio_client.data_classes import ParameterInfo
from gradio_client.documentation import document
from gradio_client.exceptions import AppError, AuthenticationError
from gradio_client.utils import (
    Communicator,
    JobStatus,
    Message,
    QueueError,
    ServerMessage,
    Status,
    StatusUpdate,
)

DEFAULT_TEMP_DIR = os.environ.get("GRADIO_TEMP_DIR") or str(
    Path(tempfile.gettempdir()) / "gradio"
)


@document("predict", "submit", "view_api", "duplicate", "deploy_discord")
class Client:
    """
    The main Client class for the Python client. This class is used to connect to a remote Gradio app and call its API endpoints.

    Example:
        from gradio_client import Client

        client = Client("abidlabs/whisper-large-v2")  # connecting to a Hugging Face Space
        client.predict("test.mp4", api_name="/predict")
        >> What a nice recording! # returns the result of the remote API call

        client = Client("https://bec81a83-5b5c-471e.gradio.live")  # connecting to a temporary Gradio share URL
        job = client.submit("hello", api_name="/predict")  # runs the prediction in a background thread
        job.result()
        >> 49 # returns the result of the remote API call (blocking call)
    """

    def __init__(
        self,
        src: str,
        hf_token: str | None = None,
        max_workers: int = 40,
        serialize: bool | None = None,  # TODO: remove in 1.0
        output_dir: str
        | Path = DEFAULT_TEMP_DIR,  # Maybe this can be combined with `download_files` in 1.0
        verbose: bool = True,
        auth: tuple[str, str] | None = None,
        *,
        headers: dict[str, str] | None = None,
        upload_files: bool = True,  # TODO: remove and hardcode to False in 1.0
        download_files: bool = True,  # TODO: consider setting to False in 1.0
        _skip_components: bool = True,  # internal parameter to skip values certain components (e.g. State) that do not need to be displayed to users.
        ssl_verify: bool = True,
    ):
        """
        Parameters:
            src: Either the name of the Hugging Face Space to load, (e.g. "abidlabs/whisper-large-v2") or the full URL (including "http" or "https") of the hosted Gradio app to load (e.g. "http://mydomain.com/app" or "https://bec81a83-5b5c-471e.gradio.live/").
            hf_token: The Hugging Face token to use to access private Spaces. Automatically fetched if you are logged in via the Hugging Face Hub CLI. Obtain from: https://huggingface.co/settings/token
            max_workers: The maximum number of thread workers that can be used to make requests to the remote Gradio app simultaneously.
            serialize: Deprecated. Please use the equivalent `upload_files` parameter instead.
            output_dir: The directory to save files that are downloaded from the remote API. If None, reads from the GRADIO_TEMP_DIR environment variable. Defaults to a temporary directory on your machine.
            verbose: Whether the client should print statements to the console.
            headers: Additional headers to send to the remote Gradio app on every request. By default only the HF authorization and user-agent headers are sent. These headers will override the default headers if they have the same keys.
            upload_files: Whether the client should treat input string filepath as files and upload them to the remote server. If False, the client will treat input string filepaths as strings always and not modify them, and files should be passed in explicitly using `gradio_client.file("path/to/file/or/url")` instead. This parameter will be deleted and False will become the default in a future version.
            download_files: Whether the client should download output files from the remote API and return them as string filepaths on the local machine. If False, the client will return a FileData dataclass object with the filepath on the remote machine instead.
            ssl_verify: If False, skips certificate validation which allows the client to connect to Gradio apps that are using self-signed certificates.
        """
        self.verbose = verbose
        self.hf_token = hf_token
        if serialize is not None:
            warnings.warn(
                "The `serialize` parameter is deprecated and will be removed. Please use the equivalent `upload_files` parameter instead."
            )
            upload_files = serialize
        self.upload_files = upload_files
        self.download_files = download_files
        self._skip_components = _skip_components
        self.headers = build_hf_headers(
            token=hf_token,
            library_name="gradio_client",
            library_version=utils.__version__,
        )
        if headers:
            self.headers.update(headers)
        self.ssl_verify = ssl_verify
        self.space_id = None
        self.cookies: dict[str, str] = {}
        self.output_dir = (
            str(output_dir) if isinstance(output_dir, Path) else output_dir
        )

        if src.startswith("http://") or src.startswith("https://"):
            _src = src if src.endswith("/") else src + "/"
        else:
            _src = self._space_name_to_src(src)
            if _src is None:
                raise ValueError(
                    f"Could not find Space: {src}. If it is a private Space, please provide an hf_token."
                )
            self.space_id = src
        self.src = _src
        state = self._get_space_state()
        if state == SpaceStage.BUILDING:
            if self.verbose:
                print("Space is still building. Please wait...")
            while self._get_space_state() == SpaceStage.BUILDING:
                time.sleep(2)  # so we don't get rate limited by the API
                pass
        if state in utils.INVALID_RUNTIME:
            raise ValueError(
                f"The current space is in the invalid state: {state}. "
                "Please contact the owner to fix this."
            )
        if self.verbose:
            print(f"Loaded as API: {self.src} ✔")

        if auth is not None:
            self._login(auth)

        self.config = self._get_config()
        self.protocol: Literal["ws", "sse", "sse_v1", "sse_v2", "sse_v2.1"] = (
            self.config.get("protocol", "ws")
        )
        self.api_url = urllib.parse.urljoin(self.src, utils.API_URL)
        self.sse_url = urllib.parse.urljoin(
            self.src, utils.SSE_URL_V0 if self.protocol == "sse" else utils.SSE_URL
        )
        self.heartbeat_url = urllib.parse.urljoin(self.src, utils.HEARTBEAT_URL)
        self.sse_data_url = urllib.parse.urljoin(
            self.src,
            utils.SSE_DATA_URL_V0 if self.protocol == "sse" else utils.SSE_DATA_URL,
        )
        self.ws_url = urllib.parse.urljoin(
            self.src.replace("http", "ws", 1), utils.WS_URL
        )
        self.upload_url = urllib.parse.urljoin(self.src, utils.UPLOAD_URL)
        self.reset_url = urllib.parse.urljoin(self.src, utils.RESET_URL)
        self.app_version = version.parse(self.config.get("version", "2.0"))
        self._info = self._get_api_info()
        self.session_hash = str(uuid.uuid4())

        endpoint_class = (
            Endpoint if self.protocol.startswith("sse") else EndpointV3Compatibility
        )
        self.endpoints = [
            endpoint_class(self, fn_index, dependency, self.protocol)
            for fn_index, dependency in enumerate(self.config["dependencies"])
        ]

        # Create a pool of threads to handle the requests
        self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)

        # Disable telemetry by setting the env variable HF_HUB_DISABLE_TELEMETRY=1
        threading.Thread(target=self._telemetry_thread, daemon=True).start()
        self._refresh_heartbeat = threading.Event()
        self._kill_heartbeat = threading.Event()

        self.heartbeat = threading.Thread(target=self._stream_heartbeat, daemon=True)
        self.heartbeat.start()

        self.stream_open = False
        self.streaming_future: Future | None = None
        self.pending_messages_per_event: dict[str, list[Message | None]] = {}
        self.pending_event_ids: set[str] = set()

    def close(self):
        self._kill_heartbeat.set()
        self.heartbeat.join(timeout=1)

    def _stream_heartbeat(self):
        while True:
            url = self.heartbeat_url.format(session_hash=self.session_hash)
            try:
                with httpx.stream(
                    "GET",
                    url,
                    headers=self.headers,
                    cookies=self.cookies,
                    verify=self.ssl_verify,
                    timeout=20,
                ) as response:
                    for _ in response.iter_lines():
                        if self._refresh_heartbeat.is_set():
                            self._refresh_heartbeat.clear()
                            break
                        if self._kill_heartbeat.is_set():
                            return
            except httpx.TransportError:
                return

    def stream_messages(
        self, protocol: Literal["sse_v1", "sse_v2", "sse_v2.1", "sse_v3"]
    ) -> None:
        try:
            with httpx.Client(
                timeout=httpx.Timeout(timeout=None), verify=self.ssl_verify
            ) as client:
                with client.stream(
                    "GET",
                    self.sse_url,
                    params={"session_hash": self.session_hash},
                    headers=self.headers,
                    cookies=self.cookies,
                ) as response:
                    for line in response.iter_lines():
                        line = line.rstrip("\n")
                        if not len(line):
                            continue
                        if line.startswith("data:"):
                            resp = json.loads(line[5:])
                            if resp["msg"] == ServerMessage.heartbeat:
                                continue
                            elif (
                                resp.get("message", "") == ServerMessage.server_stopped
                            ):
                                for (
                                    pending_messages
                                ) in self.pending_messages_per_event.values():
                                    pending_messages.append(resp)
                                return
                            elif resp["msg"] == ServerMessage.close_stream:
                                self.stream_open = False
                                return
                            event_id = resp["event_id"]
                            if event_id not in self.pending_messages_per_event:
                                self.pending_messages_per_event[event_id] = []
                            self.pending_messages_per_event[event_id].append(resp)
                            if resp["msg"] == ServerMessage.process_completed:
                                self.pending_event_ids.remove(event_id)
                            if (
                                len(self.pending_event_ids) == 0
                                and protocol != "sse_v3"
                            ):
                                self.stream_open = False
                                return
                        else:
                            raise ValueError(f"Unexpected SSE line: '{line}'")
        except BaseException as e:
            # If the job is cancelled the stream will close so we
            # should not raise this httpx exception that comes from the
            # stream abruply closing
            if isinstance(e, httpx.RemoteProtocolError):
                return
            import traceback

            traceback.print_exc()
            raise e

    def send_data(self, data, hash_data, protocol):
        req = httpx.post(
            self.sse_data_url,
            json={**data, **hash_data},
            headers=self.headers,
            cookies=self.cookies,
            verify=self.ssl_verify,
        )
        if req.status_code == 503:
            raise QueueError("Queue is full! Please try again.")
        req.raise_for_status()
        resp = req.json()
        event_id = resp["event_id"]

        if not self.stream_open:
            self.stream_open = True

            def open_stream():
                return self.stream_messages(protocol)

            def close_stream(_):
                self.stream_open = False
                for _, pending_messages in self.pending_messages_per_event.items():
                    pending_messages.append(None)

            if self.streaming_future is None or self.streaming_future.done():
                self.streaming_future = self.executor.submit(open_stream)
                self.streaming_future.add_done_callback(close_stream)

        return event_id

    @classmethod
    def duplicate(
        cls,
        from_id: str,
        to_id: str | None = None,
        hf_token: str | None = None,
        private: bool = True,
        hardware: Literal[
            "cpu-basic",
            "cpu-upgrade",
            "t4-small",
            "t4-medium",
            "a10g-small",
            "a10g-large",
            "a100-large",
        ]
        | SpaceHardware
        | None = None,
        secrets: dict[str, str] | None = None,
        sleep_timeout: int = 5,
        max_workers: int = 40,
        verbose: bool = True,
    ):
        """
        Duplicates a Hugging Face Space under your account and returns a Client object
        for the new Space. No duplication is created if the Space already exists in your
        account (to override this, provide a new name for the new Space using `to_id`).
        To use this method, you must provide an `hf_token` or be logged in via the Hugging
        Face Hub CLI.

        The new Space will be private by default and use the same hardware as the original
        Space. This can be changed by using the `private` and `hardware` parameters. For
        hardware upgrades (beyond the basic CPU tier), you may be required to provide
        billing information on Hugging Face: https://huggingface.co/settings/billing

        Parameters:
            from_id: The name of the Hugging Face Space to duplicate in the format "{username}/{space_id}", e.g. "gradio/whisper".
            to_id: The name of the new Hugging Face Space to create, e.g. "abidlabs/whisper-duplicate". If not provided, the new Space will be named "{your_HF_username}/{space_id}".
            hf_token: The Hugging Face token to use to access private Spaces. Automatically fetched if you are logged in via the Hugging Face Hub CLI. Obtain from: https://huggingface.co/settings/token
            private: Whether the new Space should be private (True) or public (False). Defaults to True.
            hardware: The hardware tier to use for the new Space. Defaults to the same hardware tier as the original Space. Options include "cpu-basic", "cpu-upgrade", "t4-small", "t4-medium", "a10g-small", "a10g-large", "a100-large", subject to availability.
            secrets: A dictionary of (secret key, secret value) to pass to the new Space. Defaults to None. Secrets are only used when the Space is duplicated for the first time, and are not updated if the duplicated Space already exists.
            sleep_timeout: The number of minutes after which the duplicate Space will be puased if no requests are made to it (to minimize billing charges). Defaults to 5 minutes.
            max_workers: The maximum number of thread workers that can be used to make requests to the remote Gradio app simultaneously.
            verbose: Whether the client should print statements to the console.
        Example:
            import os
            from gradio_client import Client
            HF_TOKEN = os.environ.get("HF_TOKEN")
            client = Client.duplicate("abidlabs/whisper", hf_token=HF_TOKEN)
            client.predict("audio_sample.wav")
            >> "This is a test of the whisper speech recognition model."
        """
        try:
            original_info = huggingface_hub.get_space_runtime(from_id, token=hf_token)
        except RepositoryNotFoundError as rnfe:
            raise ValueError(
                f"Could not find Space: {from_id}. If it is a private Space, please provide an `hf_token`."
            ) from rnfe
        if to_id:
            if "/" in to_id:
                to_id = to_id.split("/")[1]
            space_id = huggingface_hub.get_full_repo_name(to_id, token=hf_token)
        else:
            space_id = huggingface_hub.get_full_repo_name(
                from_id.split("/")[1], token=hf_token
            )
        try:
            huggingface_hub.get_space_runtime(space_id, token=hf_token)
            if verbose:
                print(
                    f"Using your existing Space: {utils.SPACE_URL.format(space_id)} 🤗"
                )
            if secrets is not None:
                warnings.warn(
                    "Secrets are only used when the Space is duplicated for the first time, and are not updated if the duplicated Space already exists."
                )
        except RepositoryNotFoundError:
            if verbose:
                print(f"Creating a duplicate of {from_id} for your own use... 🤗")
            huggingface_hub.duplicate_space(
                from_id=from_id,
                to_id=space_id,
                token=hf_token,
                exist_ok=True,
                private=private,
            )
            if secrets is not None:
                for key, value in secrets.items():
                    huggingface_hub.add_space_secret(
                        space_id, key, value, token=hf_token
                    )
            if verbose:
                print(f"Created new Space: {utils.SPACE_URL.format(space_id)}")
        current_info = huggingface_hub.get_space_runtime(space_id, token=hf_token)
        current_hardware = (
            current_info.hardware or huggingface_hub.SpaceHardware.CPU_BASIC
        )
        hardware = hardware or original_info.hardware
        if current_hardware != hardware:
            huggingface_hub.request_space_hardware(space_id, hardware, token=hf_token)  # type: ignore
            print(
                f"-------\nNOTE: this Space uses upgraded hardware: {hardware}... see billing info at https://huggingface.co/settings/billing\n-------"
            )
        # Setting a timeout only works if the hardware is not basic
        # so set it here after the hardware has been requested
        if hardware != huggingface_hub.SpaceHardware.CPU_BASIC:
            utils.set_space_timeout(
                space_id, hf_token=hf_token, timeout_in_seconds=sleep_timeout * 60
            )
        if verbose:
            print("")
        client = cls(
            space_id, hf_token=hf_token, max_workers=max_workers, verbose=verbose
        )
        return client

    def _get_space_state(self):
        if not self.space_id:
            return None
        info = huggingface_hub.get_space_runtime(self.space_id, token=self.hf_token)
        return info.stage

    def predict(
        self,
        *args,
        api_name: str | None = None,
        fn_index: int | None = None,
        **kwargs,
    ) -> Any:
        """
        Calls the Gradio API and returns the result (this is a blocking call).

        Parameters:
            args: The arguments to pass to the remote API. The order of the arguments must match the order of the inputs in the Gradio app.
            api_name: The name of the API endpoint to call starting with a leading slash, e.g. "/predict". Does not need to be provided if the Gradio app has only one named API endpoint.
            fn_index: As an alternative to api_name, this parameter takes the index of the API endpoint to call, e.g. 0. Both api_name and fn_index can be provided, but if they conflict, api_name will take precedence.
        Returns:
            The result of the API call. Will be a Tuple if the API has multiple outputs.
        Example:
            from gradio_client import Client
            client = Client(src="gradio/calculator")
            client.predict(5, "add", 4, api_name="/predict")
            >> 9.0
        """
        inferred_fn_index = self._infer_fn_index(api_name, fn_index)
        if self.endpoints[inferred_fn_index].is_continuous:
            raise ValueError(
                "Cannot call predict on this function as it may run forever. Use submit instead."
            )
        return self.submit(
            *args, api_name=api_name, fn_index=fn_index, **kwargs
        ).result()

    def new_helper(self, fn_index: int) -> Communicator:
        return Communicator(
            Lock(),
            JobStatus(),
            self.endpoints[fn_index].process_predictions,
            self.reset_url,
        )

    def submit(
        self,
        *args,
        api_name: str | None = None,
        fn_index: int | None = None,
        result_callbacks: Callable | list[Callable] | None = None,
        **kwargs,
    ) -> Job:
        """
        Creates and returns a Job object which calls the Gradio API in a background thread. The job can be used to retrieve the status and result of the remote API call.

        Parameters:
            args: The arguments to pass to the remote API. The order of the arguments must match the order of the inputs in the Gradio app.
            api_name: The name of the API endpoint to call starting with a leading slash, e.g. "/predict". Does not need to be provided if the Gradio app has only one named API endpoint.
            fn_index: As an alternative to api_name, this parameter takes the index of the API endpoint to call, e.g. 0. Both api_name and fn_index can be provided, but if they conflict, api_name will take precedence.
            result_callbacks: A callback function, or list of callback functions, to be called when the result is ready. If a list of functions is provided, they will be called in order. The return values from the remote API are provided as separate parameters into the callback. If None, no callback will be called.
        Returns:
            A Job object that can be used to retrieve the status and result of the remote API call.
        Example:
            from gradio_client import Client
            client = Client(src="gradio/calculator")
            job = client.submit(5, "add", 4, api_name="/predict")
            job.status()
            >> <Status.STARTING: 'STARTING'>
            job.result()  # blocking call
            >> 9.0
        """
        inferred_fn_index = self._infer_fn_index(api_name, fn_index)

        endpoint = self.endpoints[inferred_fn_index]

        if isinstance(endpoint, Endpoint):
            args = utils.construct_args(endpoint.parameters_info, args, kwargs)

        helper = None
        if endpoint.protocol in (
            "ws",
            "sse",
            "sse_v1",
            "sse_v2",
            "sse_v2.1",
            "sse_v3",
        ):
            helper = self.new_helper(inferred_fn_index)
        end_to_end_fn = endpoint.make_end_to_end_fn(helper)
        future = self.executor.submit(end_to_end_fn, *args)

        cancel_fn = endpoint.make_cancel(helper)

        job = Job(
            future,
            communicator=helper,
            verbose=self.verbose,
            space_id=self.space_id,
            _cancel_fn=cancel_fn,
        )

        if result_callbacks:
            if isinstance(result_callbacks, Callable):
                result_callbacks = [result_callbacks]

            def create_fn(callback) -> Callable:
                def fn(future):
                    if isinstance(future.result(), tuple):
                        callback(*future.result())
                    else:
                        callback(future.result())

                return fn

            for callback in result_callbacks:
                job.add_done_callback(create_fn(callback))

        return job

    def _get_api_info(self):
        if self.upload_files:
            api_info_url = urllib.parse.urljoin(self.src, utils.API_INFO_URL)
        else:
            api_info_url = urllib.parse.urljoin(self.src, utils.RAW_API_INFO_URL)
        if self.app_version > version.Version("3.36.1"):
            r = httpx.get(
                api_info_url,
                headers=self.headers,
                cookies=self.cookies,
                verify=self.ssl_verify,
            )
            if r.is_success:
                info = r.json()
            else:
                raise ValueError(f"Could not fetch api info for {self.src}: {r.text}")
        else:
            fetch = httpx.post(
                utils.SPACE_FETCHER_URL,
                json={
                    "config": json.dumps(self.config),
                    "serialize": self.upload_files,
                },
            )
            if fetch.is_success:
                info = fetch.json()["api"]
            else:
                raise ValueError(
                    f"Could not fetch api info for {self.src}: {fetch.text}"
                )

        return info

    def view_api(
        self,
        all_endpoints: bool | None = None,
        print_info: bool = True,
        return_format: Literal["dict", "str"] | None = None,
    ) -> dict | str | None:
        """
        Prints the usage info for the API. If the Gradio app has multiple API endpoints, the usage info for each endpoint will be printed separately. If return_format="dict" the info is returned in dictionary format, as shown in the example below.

        Parameters:
            all_endpoints: If True, prints information for both named and unnamed endpoints in the Gradio app. If False, will only print info about named endpoints. If None (default), will print info about named endpoints, unless there aren't any -- in which it will print info about unnamed endpoints.
            print_info: If True, prints the usage info to the console. If False, does not print the usage info.
            return_format: If None, nothing is returned. If "str", returns the same string that would be printed to the console. If "dict", returns the usage info as a dictionary that can be programmatically parsed, and *all endpoints are returned in the dictionary* regardless of the value of `all_endpoints`. The format of the dictionary is in the docstring of this method.
        Example:
            from gradio_client import Client
            client = Client(src="gradio/calculator")
            client.view_api(return_format="dict")
            >> {
                'named_endpoints': {
                    '/predict': {
                        'parameters': [
                            {
                                'label': 'num1',
                                'python_type': 'int | float',
                                'type_description': 'numeric value',
                                'component': 'Number',
                                'example_input': '5'
                            },
                            {
                                'label': 'operation',
                                'python_type': 'str',
                                'type_description': 'string value',
                                'component': 'Radio',
                                'example_input': 'add'
                            },
                            {
                                'label': 'num2',
                                'python_type': 'int | float',
                                'type_description': 'numeric value',
                                'component': 'Number',
                                'example_input': '5'
                            },
                        ],
                        'returns': [
                            {
                                'label': 'output',
                                'python_type': 'int | float',
                                'type_description': 'numeric value',
                                'component': 'Number',
                            },
                        ]
                    },
                    '/flag': {
                        'parameters': [
                            ...
                            ],
                        'returns': [
                            ...
                            ]
                        }
                    }
                'unnamed_endpoints': {
                    2: {
                        'parameters': [
                            ...
                            ],
                        'returns': [
                            ...
                            ]
                        }
                    }
                }
            }

        """
        num_named_endpoints = len(self._info["named_endpoints"])
        num_unnamed_endpoints = len(self._info["unnamed_endpoints"])
        if num_named_endpoints == 0 and all_endpoints is None:
            all_endpoints = True

        human_info = "Client.predict() Usage Info\n---------------------------\n"
        human_info += f"Named API endpoints: {num_named_endpoints}\n"

        for api_name, endpoint_info in self._info["named_endpoints"].items():
            human_info += self._render_endpoints_info(api_name, endpoint_info)

        if all_endpoints:
            human_info += f"\nUnnamed API endpoints: {num_unnamed_endpoints}\n"
            for fn_index, endpoint_info in self._info["unnamed_endpoints"].items():
                # When loading from json, the fn_indices are read as strings
                # because json keys can only be strings
                human_info += self._render_endpoints_info(int(fn_index), endpoint_info)
        elif num_unnamed_endpoints > 0:
            human_info += f"\nUnnamed API endpoints: {num_unnamed_endpoints}, to view, run Client.view_api(all_endpoints=True)\n"

        if print_info:
            print(human_info)
        if return_format == "str":
            return human_info
        elif return_format == "dict":
            return self._info

    def reset_session(self) -> None:
        self.session_hash = str(uuid.uuid4())
        self._refresh_heartbeat.set()

    def _render_endpoints_info(
        self,
        name_or_index: str | int,
        endpoints_info: dict[str, list[ParameterInfo]],
    ) -> str:
        parameter_info = endpoints_info["parameters"]
        parameter_names = [
            p.get("parameter_name") or p["label"] for p in parameter_info
        ]
        parameter_names = [utils.sanitize_parameter_names(p) for p in parameter_names]
        rendered_parameters = ", ".join(parameter_names)
        if rendered_parameters:
            rendered_parameters = rendered_parameters + ", "
        return_values = [p["label"] for p in endpoints_info["returns"]]
        return_values = [utils.sanitize_parameter_names(r) for r in return_values]
        rendered_return_values = ", ".join(return_values)
        if len(return_values) > 1:
            rendered_return_values = f"({rendered_return_values})"

        if isinstance(name_or_index, str):
            final_param = f'api_name="{name_or_index}"'
        elif isinstance(name_or_index, int):
            final_param = f"fn_index={name_or_index}"
        else:
            raise ValueError("name_or_index must be a string or integer")

        human_info = f"\n - predict({rendered_parameters}{final_param}) -> {rendered_return_values}\n"
        human_info += "    Parameters:\n"
        if parameter_info:
            for info in parameter_info:
                desc = (
                    f" ({info['python_type']['description']})"
                    if info["python_type"].get("description")
                    else ""
                )
                default_value = info.get("parameter_default")
                default_value = utils.traverse(
                    default_value,
                    lambda x: f"file(\"{x['url']}\")",
                    utils.is_file_obj_with_meta,
                )
                default_info = (
                    "(required)"
                    if not info.get("parameter_has_default", False)
                    else f"(not required, defaults to:   {default_value})"
                )
                type_ = info["python_type"]["type"]
                if info.get("parameter_has_default", False) and default_value is None:
                    type_ += " | None"
                human_info += f"     - [{info['component']}] {utils.sanitize_parameter_names(info.get('parameter_name') or info['label'])}: {type_} {default_info} {desc} \n"
        else:
            human_info += "     - None\n"
        human_info += "    Returns:\n"
        if endpoints_info["returns"]:
            for info in endpoints_info["returns"]:
                desc = (
                    f" ({info['python_type']['description']})"
                    if info["python_type"].get("description")
                    else ""
                )
                type_ = info["python_type"]["type"]
                human_info += f"     - [{info['component']}] {utils.sanitize_parameter_names(info['label'])}: {type_}{desc} \n"
        else:
            human_info += "     - None\n"

        return human_info

    def __repr__(self):
        return self.view_api(print_info=False, return_format="str")

    def __str__(self):
        return self.view_api(print_info=False, return_format="str")

    def _telemetry_thread(self) -> None:
        # Disable telemetry by setting the env variable HF_HUB_DISABLE_TELEMETRY=1
        data = {
            "src": self.src,
        }
        try:
            send_telemetry(
                topic="py_client/initiated",
                library_name="gradio_client",
                library_version=utils.__version__,
                user_agent=data,
            )
        except Exception:
            pass

    def _infer_fn_index(self, api_name: str | None, fn_index: int | None) -> int:
        inferred_fn_index = None
        if api_name is not None:
            for i, d in enumerate(self.config["dependencies"]):
                config_api_name = d.get("api_name")
                if config_api_name is None or config_api_name is False:
                    continue
                if "/" + config_api_name == api_name:
                    inferred_fn_index = i
                    break
            else:
                error_message = f"Cannot find a function with `api_name`: {api_name}."
                if not api_name.startswith("/"):
                    error_message += " Did you mean to use a leading slash?"
                raise ValueError(error_message)
        elif fn_index is not None:
            inferred_fn_index = fn_index
            if (
                inferred_fn_index >= len(self.endpoints)
                or not self.endpoints[inferred_fn_index].is_valid
            ):
                raise ValueError(f"Invalid function index: {fn_index}.")
        else:
            valid_endpoints = [
                e
                for e in self.endpoints
                if e.is_valid
                and e.api_name is not None
                and e.backend_fn is not None
                and e.show_api
            ]
            if len(valid_endpoints) == 1:
                inferred_fn_index = valid_endpoints[0].fn_index
            else:
                raise ValueError(
                    "This Gradio app might have multiple endpoints. Please specify an `api_name` or `fn_index`"
                )
        return inferred_fn_index

    def __del__(self):
        if hasattr(self, "executor"):
            self.executor.shutdown(wait=True)

    def _space_name_to_src(self, space) -> str | None:
        return huggingface_hub.space_info(space, token=self.hf_token).host  # type: ignore

    def _login(self, auth: tuple[str, str]):
        resp = httpx.post(
            urllib.parse.urljoin(self.src, utils.LOGIN_URL),
            data={"username": auth[0], "password": auth[1]},
            verify=self.ssl_verify,
        )
        if not resp.is_success:
            if resp.status_code == 401:
                raise AuthenticationError(
                    f"Could not login to {self.src}. Invalid credentials."
                )
            else:
                raise ValueError(f"Could not login to {self.src}.")
        self.cookies = {
            name: value for name, value in resp.cookies.items() if value is not None
        }

    def _get_config(self) -> dict:
        r = httpx.get(
            urllib.parse.urljoin(self.src, utils.CONFIG_URL),
            headers=self.headers,
            cookies=self.cookies,
            verify=self.ssl_verify,
        )
        if r.is_success:
            return r.json()
        elif r.status_code == 401:
            raise AuthenticationError(
                f"Could not load {self.src} as credentials were not provided. Please login."
            )
        else:  # to support older versions of Gradio
            r = httpx.get(
                self.src,
                headers=self.headers,
                cookies=self.cookies,
                verify=self.ssl_verify,
            )
            if not r.is_success:
                raise ValueError(f"Could not fetch config for {self.src}")
            # some basic regex to extract the config
            result = re.search(r"window.gradio_config = (.*?);[\s]*</script>", r.text)
            try:
                config = json.loads(result.group(1))  # type: ignore
            except AttributeError as ae:
                raise ValueError(
                    f"Could not get Gradio config from: {self.src}"
                ) from ae
            if "allow_flagging" in config:
                raise ValueError(
                    "Gradio 2.x is not supported by this client. Please upgrade your Gradio app to Gradio 3.x or higher."
                )
            return config

    def deploy_discord(
        self,
        discord_bot_token: str | None = None,
        api_names: list[str | tuple[str, str]] | None = None,
        to_id: str | None = None,
        hf_token: str | None = None,
        private: bool = False,
    ):
        """
        Deploy the upstream app as a discord bot. Currently only supports gr.ChatInterface.
        Parameters:
            discord_bot_token: This is the "password" needed to be able to launch the bot. Users can get a token by creating a bot app on the discord website. If run the method without specifying a token, the space will explain how to get one. See here: https://huggingface.co/spaces/freddyaboulton/test-discord-bot-v1.
            api_names: The api_names of the app to turn into bot commands. This parameter currently has no effect as ChatInterface only has one api_name ('/chat').
            to_id: The name of the space hosting the discord bot. If None, the name will be gradio-discord-bot-{random-substring}
            hf_token: HF api token with write priviledges in order to upload the files to HF space. Can be ommitted if logged in via the HuggingFace CLI, unless the upstream space is private. Obtain from: https://huggingface.co/settings/token
            private: Whether the space hosting the discord bot is private. The visibility of the discord bot itself is set via the discord website. See https://huggingface.co/spaces/freddyaboulton/test-discord-bot-v1
        """

        if self.config["mode"] == "chat_interface" and not api_names:
            api_names = [("chat", "chat")]

        valid_list = isinstance(api_names, list) and (
            isinstance(n, str)
            or (
                isinstance(n, tuple) and isinstance(n[0], str) and isinstance(n[1], str)
            )
            for n in api_names
        )
        if api_names is None or not valid_list:
            raise ValueError(
                f"Each entry in api_names must be either a string or a tuple of strings. Received {api_names}"
            )
        if len(api_names) != 1:
            raise ValueError("Currently only one api_name can be deployed to discord.")

        for i, name in enumerate(api_names):
            if isinstance(name, str):
                api_names[i] = (name, name)

        fn = next(
            (ep for ep in self.endpoints if ep.api_name == f"/{api_names[0][0]}"), None
        )
        if not fn:
            raise ValueError(
                f"api_name {api_names[0][0]} not present in {self.space_id or self.src}"
            )
        inputs = [inp for inp in fn.input_component_types if not inp.skip]
        outputs = [inp for inp in fn.input_component_types if not inp.skip]
        if not inputs == ["textbox"] and outputs == ["textbox"]:
            raise ValueError(
                "Currently only api_names with a single textbox as input and output are supported. "
                f"Received {inputs} and {outputs}"
            )

        is_private = False
        if self.space_id:
            is_private = huggingface_hub.space_info(self.space_id).private
            if is_private and not hf_token:
                raise ValueError(
                    f"Since {self.space_id} is private, you must explicitly pass in hf_token "
                    "so that it can be added as a secret in the discord bot space."
                )

        if to_id:
            if "/" in to_id:
                to_id = to_id.split("/")[1]
            space_id = huggingface_hub.get_full_repo_name(to_id, token=hf_token)
        else:
            if self.space_id:
                space_id = f'{self.space_id.split("/")[1]}-gradio-discord-bot'
            else:
                space_id = f"gradio-discord-bot-{secrets.token_hex(4)}"
            space_id = huggingface_hub.get_full_repo_name(space_id, token=hf_token)

        api = huggingface_hub.HfApi()

        try:
            huggingface_hub.space_info(space_id)
            first_upload = False
        except huggingface_hub.utils.RepositoryNotFoundError:
            first_upload = True

        huggingface_hub.create_repo(
            space_id,
            repo_type="space",
            space_sdk="gradio",
            token=hf_token,
            exist_ok=True,
            private=private,
        )
        if first_upload:
            huggingface_hub.metadata_update(
                repo_id=space_id,
                repo_type="space",
                metadata={"tags": ["gradio-discord-bot"]},
            )

        with open(
            str(Path(__file__).parent / "templates" / "discord_chat.py"),
            encoding="utf-8",
        ) as f:
            app = f.read()
        app = app.replace("<<app-src>>", self.src)
        app = app.replace("<<api-name>>", api_names[0][0])
        app = app.replace("<<command-name>>", api_names[0][1])

        with tempfile.NamedTemporaryFile(
            mode="w", delete=False, encoding="utf-8"
        ) as app_file:
            with tempfile.NamedTemporaryFile(mode="w", delete=False) as requirements:
                app_file.write(app)
                requirements.write("\n".join(["discord.py==2.3.1"]))

        operations = [
            CommitOperationAdd(path_in_repo="app.py", path_or_fileobj=app_file.name),
            CommitOperationAdd(
                path_in_repo="requirements.txt", path_or_fileobj=requirements.name
            ),
        ]

        api.create_commit(
            repo_id=space_id,
            commit_message="Deploy Discord Bot",
            repo_type="space",
            operations=operations,
            token=hf_token,
        )

        if discord_bot_token:
            huggingface_hub.add_space_secret(
                space_id, "DISCORD_TOKEN", discord_bot_token, token=hf_token
            )
        if is_private:
            huggingface_hub.add_space_secret(
                space_id,
                "HF_TOKEN",
                hf_token,  # type: ignore
                token=hf_token,
            )

        url = f"https://huggingface.co/spaces/{space_id}"
        print(f"See your discord bot here! {url}")
        return url


@dataclass
class ComponentApiType:
    skip: bool
    value_is_file: bool
    is_state: bool


@dataclass
class ReplaceMe:
    index: int


class Endpoint:
    """Helper class for storing all the information about a single API endpoint."""

    def __init__(
        self, client: Client, fn_index: int, dependency: dict, protocol: str = "sse_v1"
    ):
        self.client: Client = client
        self.fn_index = fn_index
        self.dependency = dependency
        api_name = dependency.get("api_name")
        self.api_name: str | Literal[False] | None = (
            "/" + api_name if isinstance(api_name, str) else api_name
        )
        self._info = self.client._info
        self.protocol = protocol
        self.input_component_types = [
            self._get_component_type(id_) for id_ in dependency["inputs"]
        ]
        self.output_component_types = [
            self._get_component_type(id_) for id_ in dependency["outputs"]
        ]
        self.parameters_info = self._get_parameters_info()

        self.root_url = client.src + "/" if not client.src.endswith("/") else client.src
        self.is_continuous = dependency.get("types", {}).get("continuous", False)

        # Disallow hitting endpoints that the Gradio app has disabled
        self.is_valid = self.api_name is not False
        self.backend_fn = dependency.get("backend_fn")
        self.show_api = dependency.get("show_api")

    def _get_component_type(self, component_id: int):
        component = next(
            i for i in self.client.config["components"] if i["id"] == component_id
        )
        skip_api = component.get("skip_api", component["type"] in utils.SKIP_COMPONENTS)
        return ComponentApiType(
            skip_api,
            self.value_is_file(component),
            component["type"] == "state",
        )

    def _get_parameters_info(self) -> list[ParameterInfo] | None:
        if self.api_name in self._info["named_endpoints"]:
            return self._info["named_endpoints"][self.api_name]["parameters"]
        return None

    @staticmethod
    def value_is_file(component: dict) -> bool:
        # This is still hacky as it does not tell us which part of the payload is a file.
        # If a component has a complex payload, part of which is a file, this will simply
        # return True, which means that all parts of the payload will be uploaded as files
        # if they are valid file paths. We will deprecate this 1.0.
        if "api_info" not in component:
            return False
        return utils.value_is_file(component["api_info"])

    def __repr__(self):
        return f"Endpoint src: {self.client.src}, api_name: {self.api_name}, fn_index: {self.fn_index}"

    def __str__(self):
        return self.__repr__()

    def make_end_to_end_fn(self, helper: Communicator | None = None):
        _predict = self.make_predict(helper)

        def _inner(*data):
            if not self.is_valid:
                raise utils.InvalidAPIEndpointError()

            data = self.insert_empty_state(*data)
            data = self.process_input_files(*data)
            predictions = _predict(*data)
            predictions = self.process_predictions(*predictions)

            # Append final output only if not already present
            # for consistency between generators and not generators
            if helper:
                with helper.lock:
                    if not helper.job.outputs:
                        helper.job.outputs.append(predictions)
            return predictions

        return _inner

    def make_cancel(
        self,
        helper: Communicator | None,
    ):
        if helper is None:
            return
        if self.client.app_version > version.Version("4.29.0"):
            url = urllib.parse.urljoin(self.client.src, utils.CANCEL_URL)

            # The event_id won't be set on the helper until later
            # so need to create the data in a function that's run at cancel time
            def post_data():
                return {
                    "fn_index": self.fn_index,
                    "session_hash": self.client.session_hash,
                    "event_id": helper.event_id,
                }

            cancel_msg = None
            cancellable = True
        else:
            candidates: list[tuple[int, list[int]]] = []
            for i, dep in enumerate(self.client.config["dependencies"]):
                if self.fn_index in dep["cancels"]:
                    candidates.append(
                        (i, [d for d in dep["cancels"] if d != self.fn_index])
                    )

            fn_index, other_cancelled = (
                min(candidates, key=lambda x: len(x[1])) if candidates else (None, None)
            )
            cancellable = fn_index is not None
            cancel_msg = None
            if cancellable and other_cancelled:
                other_api_names = [
                    "/" + self.client.config["dependencies"][i].get("api_name")
                    for i in other_cancelled
                ]
                cancel_msg = (
                    f"Cancelled this job will also cancel any jobs for {', '.join(other_api_names)} "
                    "that are currently running."
                )
            elif not cancellable:
                cancel_msg = (
                    "Cancelling this job will not stop the server from running. "
                    "To fix this, an event must be added to the upstream app that explicitly cancels this one or "
                    "the upstream app must be running Gradio 4.29.0 and greater."
                )

            def post_data():
                return {
                    "data": [],
                    "fn_index": fn_index,
                    "session_hash": self.client.session_hash,
                }

            url = self.client.api_url

        def _cancel():
            if cancel_msg:
                warnings.warn(cancel_msg)
            if cancellable:
                httpx.post(
                    url,
                    json=post_data(),
                    headers=self.client.headers,
                    cookies=self.client.cookies,
                    verify=self.client.ssl_verify,
                )

        return _cancel

    def make_predict(self, helper: Communicator | None = None):
        def _predict(*data) -> tuple:
            data = {
                "data": data,
                "fn_index": self.fn_index,
                "session_hash": self.client.session_hash,
            }

            hash_data = {
                "fn_index": self.fn_index,
                "session_hash": self.client.session_hash,
            }

            if self.protocol == "sse":
                result = self._sse_fn_v0(data, hash_data, helper)  # type: ignore
            elif self.protocol in ("sse_v1", "sse_v2", "sse_v2.1", "sse_v3"):
                event_id = self.client.send_data(data, hash_data, self.protocol)
                self.client.pending_event_ids.add(event_id)
                self.client.pending_messages_per_event[event_id] = []
                helper.event_id = event_id
                result = self._sse_fn_v1plus(helper, event_id, self.protocol)
            else:
                raise ValueError(f"Unsupported protocol: {self.protocol}")

            if "error" in result:
                if result["error"] is None:
                    raise AppError(
                        "The upstream Gradio app has raised an exception but has not enabled "
                        "verbose error reporting. To enable, set show_error=True in launch()."
                    )
                else:
                    raise AppError(
                        "The upstream Gradio app has raised an exception: "
                        + result["error"]
                    )

            try:
                output = result["data"]
            except KeyError as ke:
                is_public_space = (
                    self.client.space_id
                    and not huggingface_hub.space_info(self.client.space_id).private
                )
                if "error" in result and "429" in result["error"] and is_public_space:
                    raise utils.TooManyRequestsError(
                        f"Too many requests to the API, please try again later. To avoid being rate-limited, "
                        f"please duplicate the Space using Client.duplicate({self.client.space_id}) "
                        f"and pass in your Hugging Face token."
                    ) from None
                elif "error" in result:
                    raise ValueError(result["error"]) from None
                raise KeyError(
                    f"Could not find 'data' key in response. Response received: {result}"
                ) from ke
            return tuple(output)

        return _predict

    def insert_empty_state(self, *data) -> tuple:
        data = list(data)
        for i, input_component_type in enumerate(self.input_component_types):
            if input_component_type.is_state:
                data.insert(i, None)
        return tuple(data)

    def process_input_files(self, *data) -> tuple:
        data_ = []
        for i, d in enumerate(data):
            if self.client.upload_files and self.input_component_types[i].value_is_file:
                d = utils.traverse(
                    d,
                    partial(self._upload_file, data_index=i),
                    lambda f: utils.is_filepath(f)
                    or utils.is_file_obj_with_meta(f)
                    or utils.is_http_url_like(f),
                )
            elif not self.client.upload_files:
                d = utils.traverse(
                    d,
                    partial(self._upload_file, data_index=i),
                    utils.is_file_obj_with_meta,
                )
            data_.append(d)
        return tuple(data_)

    def process_predictions(self, *predictions):
        # If self.download_file is True, we assume that that the user is using the Client directly (as opposed
        # within gr.load) and therefore, download any files generated by the server and skip values for
        # components that the user likely does not want to see (e.g. gr.State, gr.Tab).
        if self.client.download_files:
            predictions = self.download_files(*predictions)
        if self.client._skip_components:
            predictions = self.remove_skipped_components(*predictions)
        predictions = self.reduce_singleton_output(*predictions)
        return predictions

    def download_files(self, *data) -> tuple:
        data_ = list(data)
        if self.client.protocol == "sse_v2.1":
            data_ = utils.traverse(
                data_, self._download_file, utils.is_file_obj_with_meta
            )
        else:
            data_ = utils.traverse(data_, self._download_file, utils.is_file_obj)
        return tuple(data_)

    def remove_skipped_components(self, *data) -> tuple:
        """"""
        data = [d for d, oct in zip(data, self.output_component_types) if not oct.skip]
        return tuple(data)

    def reduce_singleton_output(self, *data) -> Any:
        if self.client._skip_components:
            effective_output_components = [
                o for o in self.output_component_types if not o.skip
            ]
        else:
            effective_output_components = self.output_component_types
        if len(effective_output_components) == 1:
            return data[0]
        else:
            return data

    def _upload_file(self, f: str | dict, data_index: int) -> dict[str, str]:
        if isinstance(f, str):
            warnings.warn(
                f'The Client is treating: "{f}" as a file path. In future versions, this behavior will not happen automatically. '
                f'\n\nInstead, please provide file path or URLs like this: gradio_client.file("{f}"). '
                "\n\nNote: to stop treating strings as filepaths unless file() is used, set upload_files=False in Client()."
            )
            file_path = f
        else:
            file_path = f["path"]
        if not utils.is_http_url_like(file_path):
            component_id = self.dependency["inputs"][data_index]
            component_config = next(
                (
                    c
                    for c in self.client.config["components"]
                    if c["id"] == component_id
                ),
                {},
            )
            max_file_size = self.client.config.get("max_file_size", None)
            max_file_size = math.inf if max_file_size is None else max_file_size
            if os.path.getsize(file_path) > max_file_size:
                raise ValueError(
                    f"File {file_path} exceeds the maximum file size of {max_file_size} bytes "
                    f"set in {component_config.get('label', '') + ''} component."
                )
            with open(file_path, "rb") as f:
                files = [("files", (Path(file_path).name, f))]
                r = httpx.post(
                    self.client.upload_url,
                    headers=self.client.headers,
                    cookies=self.client.cookies,
                    verify=self.client.ssl_verify,
                    files=files,
                )
            r.raise_for_status()
            result = r.json()
            file_path = result[0]
        return {"path": file_path}

    def _download_file(self, x: dict) -> str:
        url_path = self.root_url + "file=" + x["path"]
        if self.client.output_dir is not None:
            os.makedirs(self.client.output_dir, exist_ok=True)

        sha1 = hashlib.sha1()
        temp_dir = Path(tempfile.gettempdir()) / secrets.token_hex(20)
        temp_dir.mkdir(exist_ok=True, parents=True)

        with httpx.stream(
            "GET",
            url_path,
            headers=self.client.headers,
            cookies=self.client.cookies,
            verify=self.client.ssl_verify,
            follow_redirects=True,
        ) as response:
            response.raise_for_status()
            with open(temp_dir / Path(url_path).name, "wb") as f:
                for chunk in response.iter_bytes(chunk_size=128 * sha1.block_size):
                    sha1.update(chunk)
                    f.write(chunk)

        directory = Path(self.client.output_dir) / sha1.hexdigest()
        directory.mkdir(exist_ok=True, parents=True)
        dest = directory / Path(url_path).name
        shutil.move(temp_dir / Path(url_path).name, dest)
        return str(dest.resolve())

    def _sse_fn_v0(self, data: dict, hash_data: dict, helper: Communicator):
        with httpx.Client(
            timeout=httpx.Timeout(timeout=None), verify=self.client.ssl_verify
        ) as client:
            return utils.get_pred_from_sse_v0(
                client,
                data,
                hash_data,
                helper,
                self.client.sse_url,
                self.client.sse_data_url,
                self.client.headers,
                self.client.cookies,
                self.client.ssl_verify,
                self.client.executor,
            )

    def _sse_fn_v1plus(
        self,
        helper: Communicator,
        event_id: str,
        protocol: Literal["sse_v1", "sse_v2", "sse_v2.1", "sse_v3"],
    ):
        return utils.get_pred_from_sse_v1plus(
            helper,
            self.client.headers,
            self.client.cookies,
            self.client.pending_messages_per_event,
            event_id,
            protocol,
            self.client.ssl_verify,
            self.client.executor,
        )


@document("result", "outputs", "status")
class Job(Future):
    """
    A Job is a wrapper over the Future class that represents a prediction call that has been
    submitted by the Gradio client. This class is not meant to be instantiated directly, but rather
    is created by the Client.submit() method.

    A Job object includes methods to get the status of the prediction call, as well to get the outputs of
    the prediction call. Job objects are also iterable, and can be used in a loop to get the outputs
    of prediction calls as they become available for generator endpoints.
    """

    def __init__(
        self,
        future: Future,
        communicator: Communicator | None = None,
        verbose: bool = True,
        space_id: str | None = None,
        _cancel_fn: Callable[[], None] | None = None,
    ):
        """
        Parameters:
            future: The future object that represents the prediction call, created by the Client.submit() method
            communicator: The communicator object that is used to communicate between the client and the background thread running the job
            verbose: Whether to print any status-related messages to the console
            space_id: The space ID corresponding to the Client object that created this Job object
        """
        self.future = future
        self.communicator = communicator
        self._counter = 0
        self.verbose = verbose
        self.space_id = space_id
        self.cancel_fn = _cancel_fn

    def __iter__(self) -> Job:
        return self

    def __next__(self) -> tuple | Any:
        if not self.communicator:
            raise StopIteration()

        while True:
            with self.communicator.lock:
                if len(self.communicator.job.outputs) >= self._counter + 1:
                    o = self.communicator.job.outputs[self._counter]
                    self._counter += 1
                    return o
                if (
                    self.communicator.job.latest_status.code == Status.FINISHED
                    and self._counter >= len(self.communicator.job.outputs)
                ):
                    raise StopIteration()
                time.sleep(0.001)

    def result(self, timeout: float | None = None) -> Any:
        """
        Return the result of the call that the future represents. Raises CancelledError: If the future was cancelled, TimeoutError: If the future didn't finish executing before the given timeout, and Exception: If the call raised then that exception will be raised.

        Parameters:
            timeout: The number of seconds to wait for the result if the future isn't done. If None, then there is no limit on the wait time.
        Returns:
            The result of the call that the future represents. For generator functions, it will return the final iteration.
        Example:
            from gradio_client import Client
            calculator = Client(src="gradio/calculator")
            job = calculator.submit("foo", "add", 4, fn_index=0)
            job.result(timeout=5)
            >> 9
        """
        return super().result(timeout=timeout)

    def outputs(self) -> list[tuple | Any]:
        """
        Returns a list containing the latest outputs from the Job.

        If the endpoint has multiple output components, the list will contain
        a tuple of results. Otherwise, it will contain the results without storing them
        in tuples.

        For endpoints that are queued, this list will contain the final job output even
        if that endpoint does not use a generator function.

        Example:
            from gradio_client import Client
            client = Client(src="gradio/count_generator")
            job = client.submit(3, api_name="/count")
            while not job.done():
                time.sleep(0.1)
            job.outputs()
            >> ['0', '1', '2']
        """
        if not self.communicator:
            return []
        else:
            with self.communicator.lock:
                return self.communicator.job.outputs

    def status(self) -> StatusUpdate:
        """
        Returns the latest status update from the Job in the form of a StatusUpdate
        object, which contains the following fields: code, rank, queue_size, success, time, eta, and progress_data.

        progress_data is a list of updates emitted by the gr.Progress() tracker of the event handler. Each element
        of the list has the following fields: index, length, unit, progress, desc. If the event handler does not have
        a gr.Progress() tracker, the progress_data field will be None.

        Example:
            from gradio_client import Client
            client = Client(src="gradio/calculator")
            job = client.submit(5, "add", 4, api_name="/predict")
            job.status()
            >> <Status.STARTING: 'STARTING'>
            job.status().eta
            >> 43.241  # seconds
        """
        time = datetime.now()
        cancelled = False
        if self.communicator:
            with self.communicator.lock:
                cancelled = self.communicator.should_cancel
        if cancelled:
            return StatusUpdate(
                code=Status.CANCELLED,
                rank=0,
                queue_size=None,
                success=False,
                time=time,
                eta=None,
                progress_data=None,
            )
        if self.done():
            if not self.future._exception:  # type: ignore
                return StatusUpdate(
                    code=Status.FINISHED,
                    rank=0,
                    queue_size=None,
                    success=True,
                    time=time,
                    eta=None,
                    progress_data=None,
                )
            else:
                return StatusUpdate(
                    code=Status.FINISHED,
                    rank=0,
                    queue_size=None,
                    success=False,
                    time=time,
                    eta=None,
                    progress_data=None,
                )
        elif not self.communicator:
            return StatusUpdate(
                code=Status.PROCESSING,
                rank=0,
                queue_size=None,
                success=None,
                time=time,
                eta=None,
                progress_data=None,
            )
        else:
            with self.communicator.lock:
                eta = self.communicator.job.latest_status.eta
                if self.verbose and self.space_id and eta and eta > 30:
                    print(
                        f"Due to heavy traffic on this app, the prediction will take approximately {int(eta)} seconds."
                        f"For faster predictions without waiting in queue, you may duplicate the space using: Client.duplicate({self.space_id})"
                    )
                return self.communicator.job.latest_status

    def cancel(self) -> bool:
        """Cancels the job as best as possible.

        If the app you are connecting to has the gradio queue enabled, the job
        will be cancelled locally as soon as possible. For apps that do not use the
        queue, the job cannot be cancelled if it's been sent to the local executor
        (for the time being).

        Note: In general, this DOES not stop the process from running in the upstream server
        except for the following situations:

        1. If the job is queued upstream, it will be removed from the queue and the server will not run the job
        2. If the job has iterative outputs, the job will finish as soon as the current iteration finishes running
        3. If the job has not been picked up by the queue yet, the queue will not pick up the job
        """
        if self.communicator:
            with self.communicator.lock:
                self.communicator.should_cancel = True
                if self.cancel_fn:
                    self.cancel_fn()
                return True
        return self.future.cancel()

    def __getattr__(self, name):
        """Forwards any properties to the Future class."""
        return getattr(self.future, name)