File size: 911 Bytes
5e0bfa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# app.py
import streamlit as st
from PIL import Image
import torch
from utils.model_utils import load_model, predict
from utils.preprocessing import preprocess_image

st.set_page_config(page_title="X-ray Diagnosis Demo", layout="centered")
st.title("🩻 X-ray Multi-Label Diagnosis App (CheXNet)")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = "model/dannynet-55-best_model_20250422-211522.pth"
model = load_model(model_path, device)

uploaded_file = st.file_uploader("Upload a chest X-ray", type=["jpg", "jpeg", "png"])

if uploaded_file:
    image = Image.open(uploaded_file).convert("RGB")
    st.image(image, caption="Uploaded X-ray", use_column_width=True)

    img_tensor = preprocess_image(image)

    probs = predict(model, img_tensor, device)

    st.subheader("Predictions")
    for disease, prob in probs.items():
        st.write(f"**{disease}**: {prob:.4f}")