File size: 4,460 Bytes
a00be78
 
e915c68
 
a00be78
033af05
a00be78
 
13e0d1b
 
4ed656e
e915c68
13e0d1b
e915c68
033af05
a00be78
13e0d1b
033af05
a00be78
 
033af05
13e0d1b
 
 
 
 
 
e915c68
13e0d1b
 
 
 
 
 
 
a00be78
e915c68
 
 
 
 
 
13e0d1b
 
e915c68
 
 
 
 
 
 
 
 
44cb622
13e0d1b
 
a00be78
 
 
 
 
 
 
 
 
44cb622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00be78
44cb622
a00be78
 
4ed656e
e915c68
13e0d1b
 
 
91c3a02
13e0d1b
 
 
 
 
 
 
 
e915c68
 
13e0d1b
 
 
 
 
 
 
 
 
 
 
 
e915c68
13e0d1b
e915c68
13e0d1b
 
e915c68
 
91c3a02
 
e915c68
 
 
 
 
 
91c3a02
e915c68
91c3a02
 
e915c68
 
91c3a02
e915c68
91c3a02
 
e915c68
 
 
13e0d1b
 
a00be78
 
13e0d1b
a00be78
 
 
91c3a02
a00be78
13e0d1b
a00be78
 
13e0d1b
 
e915c68
 
a00be78
 
13e0d1b
 
e915c68
a00be78
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import HfApi
import matplotlib.pyplot as plt
from typing import Tuple, Optional
import pandas as pd
import gradio as gr
import duckdb
import requests
import llama_cpp
import instructor
import spaces
import enum

from pydantic import BaseModel, Field

BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
view_name = "dataset_view"

hf_api = HfApi()
conn = duckdb.connect()

llama = llama_cpp.Llama(
    model_path="Hermes-2-Pro-Llama-3-8B-Q8_0.gguf",
    n_gpu_layers=-1,
    chat_format="chatml",
    n_ctx=2048,
    verbose=False,
    temperature=0.1,
)

create = instructor.patch(
    create=llama.create_chat_completion_openai_v1,
    mode=instructor.Mode.JSON_SCHEMA,
)


class OutputTypes(str, enum.Enum):
    TABLE = "table"
    BARCHART = "barchart"
    LINECHART = "linechart"


class SQLResponse(BaseModel):
    sql: str
    visualization_type: Optional[OutputTypes] = Field(
        None, description="The type of visualization to display"
    )
    data_key: Optional[str] = Field(
        None, description="The column name that contains the data for chart responses"
    )
    label_key: Optional[str] = Field(
        None, description="The column name that contains the labels for chart responses"
    )


def get_dataset_ddl(dataset_id: str) -> str:
    response = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset_id}")
    response.raise_for_status()  # Check if the request was successful

    first_parquet = response.json().get("parquet_files", [])[0]
    first_parquet_url = first_parquet.get("url")

    if not first_parquet_url:
        raise ValueError("No valid URL found for the first parquet file.")

    conn.execute(
        f"CREATE OR REPLACE VIEW {view_name} as SELECT * FROM read_parquet('{first_parquet_url}');"
    )
    dataset_ddl = conn.execute(f"PRAGMA table_info('{view_name}');").fetchall()

    column_data_types = ",\n\t".join(
        [f"{column[1]} {column[2]}" for column in dataset_ddl]
    )

    sql_ddl = """
CREATE TABLE {} (
    {}
);
    """.format(
        view_name, column_data_types
    )

    return sql_ddl


@spaces.GPU
def generate_query(dataset_id: str, query: str) -> str:
    ddl = get_dataset_ddl(dataset_id)

    system_prompt = f"""
    You are an expert SQL assistant with access to the following PostgreSQL Table:
    
    ```sql
    {ddl}
    ```
    
    Please assist the user by writing a SQL query that answers the user's question.
    """

    print("Calling LLM with system prompt: ", system_prompt)

    resp: SQLResponse = create(
        model="Hermes-2-Pro-Llama-3-8B",
        messages=[
            {"role": "system", "content": system_prompt},
            {
                "role": "user",
                "content": query,
            },
        ],
        response_model=SQLResponse,
    )

    print("Received Response: ", resp)

    return resp


def query_dataset(dataset_id: str, query: str) -> Tuple[pd.DataFrame, str, plt.Figure]:
    response: SQLResponse = generate_query(dataset_id, query)

    print("Querying Parquet...")
    df = conn.execute(response.sql).fetchdf()

    plot = None

    if response.visualization_type == OutputTypes.LINECHART:
        plot = df.plot(
            kind="line", x=response.label_key, y=response.data_key
        ).get_figure()
        plt.xticks(rotation=45, ha="right")
        plt.tight_layout()
    elif response.visualization_type == OutputTypes.BARCHART:
        plot = df.plot(
            kind="bar", x=response.label_key, y=response.data_key
        ).get_figure()
        plt.xticks(rotation=45, ha="right")
        plt.tight_layout()

    markdown_output = f"""```sql\n{response.sql}\n```"""
    return df, markdown_output, plot


with gr.Blocks() as demo:
    gr.Markdown("# Query your HF Datasets with Natural Language πŸ“ˆπŸ“Š")
    dataset_id = HuggingfaceHubSearch(
        label="Hub Dataset ID",
        placeholder="Find your favorite dataset...",
        search_type="dataset",
        value="gretelai/synthetic_text_to_sql",
    )
    user_query = gr.Textbox("", label="Ask anything...")

    btn = gr.Button("Ask πŸͺ„")

    sql_query = gr.Markdown(label="Output SQL Query")
    df = gr.DataFrame()
    plot = gr.Plot()

    btn.click(
        query_dataset,
        inputs=[dataset_id, user_query],
        outputs=[df, sql_query, plot],
    )


if __name__ == "__main__":
    demo.launch()