File size: 4,392 Bytes
b20f5ed ad93163 97aa13e 943a06b 4af6be2 943a06b 97aa13e 943a06b de6415b 943a06b f66ad4d 943a06b 0c9ae8f 58dc75b 695dec0 58dc75b 695dec0 58dc75b 695dec0 58dc75b 695dec0 58dc75b f26fbb4 3653538 f66ad4d 0c9ae8f 943a06b 9b042db 943a06b 4af6be2 943a06b 4af6be2 943a06b 017f2df 943a06b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import en_core_web_md
nlp = en_core_web_md.load()
#import spacy
import re
import numpy
import tflearn
import tensorflow
import os
def convert_txt_to_DataFrame(textFile):
with open(textFile) as f:
lines = f.readlines()
# remove all '\n' characters in all lines
lines = list(map(lambda x: x.strip('\n'), lines))
temp_dict = {}
for x in lines:
if '- -' in x:
# add new key to dict
temp_dict[x.strip('- -')] = []
for i, x in enumerate(lines):
if '- -' in x:
# '- -' = the question
# ' -' = the answers, there could be multiple answers for 1 question
# add the values(answers) to the question(key) of the dictionaries
temp_dict[x.strip('- -')].append(lines[i+1].strip(' -'))
return temp_dict
#npl = spacy.load('en_core_web_md')
def convert_to_list(file):
data = convert_txt_to_DataFrame(file)
question = []
temp_bag = []
ans = []
for x in data:
ans.append(data[x])
x = re.sub(r'[^\w\s]', '', x)
temp_bag.append(x)
for x in temp_bag:
x1 = nlp(x)
temp = []
for z in x1:
temp.append(z.lemma_)
question.append(temp)
return question,ans
def addQuestion(file):
name = str(file).strip('.txt')
# print(f"\n\n{name}\n\n")
temp_ques = {}
temp_ans = {}
ques, ans = convert_to_list(file)
temp_ques[name] = ques
temp_ans[name] = ans
return (ml_data.update(temp_ques), ans_data.update(temp_ans))
ml_data = {}
ans_data = {}
addQuestion('hello.txt')
addQuestion('how are you.txt')
addQuestion('interest.txt')
addQuestion('who are you.txt')
addQuestion('you a robot.txt')
addQuestion('tell me about yourself.txt')
addQuestion('what language python.txt')
addQuestion('What is AI.txt')
addQuestion('Tell me a joke.txt')
addQuestion('you are stupid.txt')
addQuestion('Pollak Library.txt')
addQuestion('Where is the building.txt')
addQuestion('hungry.txt')
addQuestion('What is your major.txt')
addQuestion('free time.txt')
addQuestion('I need help.txt')
addQuestion('your food.txt')
addQuestion('what time.txt')
addQuestion('weather.txt')
addQuestion('your job.txt')
addQuestion('old.txt')
addQuestion('love you.txt')
addQuestion('shut up.txt')
addQuestion('where is csuf.txt')
addQuestion('csuf mascot.txt')
addQuestion('school start.txt')
addQuestion('golden gate.txt')
addQuestion('trc.txt')
addQuestion('gwpac.txt')
addQuestion('lovelace.txt')
addQuestion('bathroom.txt')
addQuestion('starbucks.txt')
addQuestion('workout.txt')
addQuestion('tuffy.txt')
addQuestion('mccarthy.txt')
addQuestion('sgmh.txt')
addQuestion('david.txt')
addQuestion('microwave.txt')
addQuestion('arboretum.txt')
addQuestion('langdor.txt')
addQuestion('restroom.txt')
addQuestion('burger.txt')
addQuestion('tsu.txt')
addQuestion('park.txt')
addQuestion('dan.txt')
labels = []
for x in ml_data:
labels.append(x)
labels = sorted(labels)
# labels
words = []
for x in ml_data:
for z in ml_data[x]:
words.extend(z)
words = sorted(list(set(words)))
#source: https://www.techwithtim.net/tutorials/ai-chatbot/part-2/
out_empty = [0 for _ in range(len(labels))]
training = []
output = []
for x, ques in enumerate(ml_data):
print(f"question: {ques}\n\n")
bag = []
wrds = []
for w in ml_data[ques]:
wrds.extend(w)
for w in words:
if w in wrds:
bag.append(1)
print(f"{w} = 1")
else:
bag.append(0)
# print(f"words: {w} = 0")
output_row = out_empty[:]
output_row[labels.index(ques)] = 1
print('\n', output_row)
training.append(bag)
output.append(output_row)
print(labels)
print("\n\n****\n\n")
training = numpy.array(training)
output = numpy.array(output)
tensorflow.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
if os.path.exists('minh103.meta'):
model.load('minh103')
else:
model = tflearn.DNN(net)
model.fit(training, output, n_epoch=50000, batch_size=10, show_metric=True)
model.save('minh103')
|