File size: 6,453 Bytes
14e17ef ee79db1 14e17ef f94a42e ee79db1 f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e ee79db1 f94a42e ee79db1 f94a42e ee79db1 f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef f94a42e 14e17ef ee79db1 f94a42e 14e17ef f94a42e ee79db1 14e17ef f94a42e 14e17ef ee79db1 f94a42e 14e17ef f94a42e 14e17ef ee79db1 14e17ef f94a42e 14e17ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import streamlit as st
from transformers import pipeline
import pickle
import os
import pandas as pd
import ast
import string
import re
from sentence_transformers import SentenceTransformer, util
st.set_page_config(
page_title="Offer Recommender",
layout="wide"
)
# Download and cache models
pipe = pipeline(task="zero-shot-classification", model="valhalla/distilbart-mnli-12-3")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Directory of csv files
dire = "DS_NLP_search_data"
# Use Streamlit caching to load data once
@st.cache_data
def get_processed_offers():
'''
Load processed offers from exploration notebook and cache
Returns:
processed_offers (pd.DataFrame) : zero-shot categorized offers
'''
processed_offers = pd.read_csv(os.path.join(dire, "processed_offers.csv"))
processed_offers["CATEGORY"] = processed_offers["CATEGORY"].map(ast.literal_eval)
return processed_offers
@st.cache_data
def get_categories_data():
'''
Load raw category data and cache
Returns:
cats (pd.DataFrame) : raw category data
'''
cats = pd.read_csv(os.path.join(dire, "categories.csv"))
return cats
@st.cache_data
def get_offers_data():
'''
Load raw offfers data and cache
Returns:
cats (pd.DataFrame) : raw offers data
'''
offers = pd.read_csv(os.path.join(dire, "offer_retailer.csv"))
return offers
@st.cache_data
def get_categories(cats_):
'''
Extract, load categories and cache
Parameters:
cats_ (pd.DataFrame) : raw categories data
Returns:
categories (List) : child categories
'''
categories = list(cats_["IS_CHILD_CATEGORY_TO"].unique())
for x in ["Mature"]:
if x in categories:
categories.remove(x)
return categories
def check_in_offer(search_str, offer_rets):
'''
Determine if the input text is directly in the offer with basic string matching
Parameters:
search_str (string) : user text input
offer_rets (pd.DataFrame) : raw offer data
Returns:
df (pd.DataFrame) : offers with text input
'''
offers = []
for i in range(len(offer_rets)):
offer_str = offer_rets.iloc[i]["OFFER"]
parsed_str = offer_str.lower().translate(str.maketrans('', '', string.punctuation))
parsed_str = re.sub('[^a-zA-Z0-9 \n\.]', '', parsed_str)
if search_str.lower() in parsed_str.split(" "):
offers.append(offer_str)
df = pd.DataFrame({"OFFER":offers})
return df
def is_retailer(search_str, threshold=0.5):
'''
Determine if the text input is highly likely to be a retailer
Parameters:
search_str (string) : user text input
threshold (int) : probability threshold
Returns:
is_ret (boolean) : true if retailer, false otherwise
'''
processed_search_str = search_str.lower().capitalize()
labels = pipe(processed_search_str,
candidate_labels=["brand", "retailer", "item"],
)
is_ret = labels["labels"][0] == "retailer" and labels["scores"][0] > threshold
return is_ret
def perform_cat_inference(search_str, categories, cats, processed_offers):
'''
Perform zero shot learning twice and return the offers relevant to the child categories
Parameters:
search_str (string) : user text input
categories (pd.DataFrame) : list of categories
cats (pd.DataFrame) : raw category data
processed_offers (pd.DataFrame) : processed_offer_data
Returns:
offers (pd.DataFrame) : relevant offers
labels (dict) : parent categories and their probability scores
labels_2 (dict) : child categories and their probability scores
'''
labels = pipe(search_str,
candidate_labels=categories,
)
# labels = [l for i, l in enumerate(labels["labels"]) if labels["scores"][i] > 0.20]
filtered_cats = list(cats[cats["IS_CHILD_CATEGORY_TO"].isin(labels["labels"][:3])]["PRODUCT_CATEGORY"].unique())
labels_2 = pipe(search_str,
candidate_labels=filtered_cats,
)
top_labels = labels_2["labels"][:3]
offers = processed_offers[processed_offers["CATEGORY"].apply(lambda x: bool(set(x) & set(top_labels)))]["OFFER"].reset_index()
return offers, labels, labels_2
def sort_by_similarity(search_str, related_offers):
'''
Use sentence embeddings to evaluate the similarity of relevant offers to the text input
Parameters:
search_str (string) : user text input
related_offers (pd.DataFrame) : relevant offers discovered by zero shot learning
Returns:
df (pd.DataFrame) : relevant offers and their similiarity scores
'''
temp_dict = {}
embedding_1 = model.encode(search_str, convert_to_tensor=True)
for offer in list(related_offers["OFFER"]):
embedding_2 = model.encode(offer, convert_to_tensor=True)
temp_dict[offer] = float(util.pytorch_cos_sim(embedding_1, embedding_2))
sorted_dict = dict(sorted(temp_dict.items(), key=lambda x : x[1], reverse=True))
df = pd.DataFrame({"OFFER":list(sorted_dict.keys())[:20], "scores":list(sorted_dict.values())[:20]})
return df
def main():
# Load and cache data
col_1, col_2, col_3 = st.columns(3)
search_str = col_1.text_input("Enter a retailer, brand, or category").capitalize()
processed_offers = get_processed_offers()
cats = get_categories_data()
offer_rets = get_offers_data()
categories = get_categories(cats)
if col_1.button("Search", type="primary"):
# Check offers where the text is directly in it
retail = is_retailer(search_str)
direct_offers = check_in_offer(search_str, offer_rets)
col_2.write("Directly related offers")
if len(direct_offers) == 0:
col_2.write("None found")
else:
col_2.table(direct_offers)
if retail:
# If retail, we directly compare every offer using sentence embeddings
related_offers = offer_rets[~offer_rets["OFFER"].isin(list(direct_offers["OFFER"]))]
else:
# Otherwise, we use zero shot learning with processed offers to narrow down our search
related_offers, labels_1, labels_2 = perform_cat_inference(search_str, categories, cats, processed_offers)
related_offers = related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))]
col_2.write("Parent categories probabilities")
col_2.table(pd.DataFrame({"labels": labels_1["labels"][:5], "scores": labels_1["scores"][:5]}))
col_2.write("Child categories probabilities")
col_2.table(pd.DataFrame({"labels": labels_2["labels"][:5], "scores": labels_2["scores"][:5]}))
col_2.write("Other related offers")
sorted_offers = sort_by_similarity(search_str, related_offers)
if len(sorted_offers) == 0:
col_2.write("None found")
else:
col_2.table(sorted_offers)
if __name__ == "__main__":
main()
|