File size: 17,012 Bytes
fbe47e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f98dd6
fbe47e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import s3fs
import pandas as pd
import numpy as np
from numpy import arange
from colour import Color
import plotly.graph_objects as go
from nltk import tokenize
from IPython.display import Markdown
from PIL import ImageColor
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import nltk
nltk.download('punkt')
import email
import codecs
import pickle
import string
from scipy import spatial
import re
import pytorch_lightning as pl
from bs4 import BeautifulSoup
import ipywidgets as widgets
from ipywidgets import FileUpload
from urlextract import URLExtract
from transformers import BertTokenizerFast as BertTokenizer, BertModel, BertConfig
import torch.nn as nn
import torch
from ipywidgets import interact, Dropdown
import boto3
from sagemaker import get_execution_role
from scipy import spatial
from ipyfilechooser import FileChooser
import random


PARAMS={
'BATCH_SIZE': 8,
'MAX_TOKEN_COUNT':100, 
'BERT_MODEL_NAME':'google/bert_uncased_L-2_H-128_A-2'  , 
'N_EPOCHS': 10,  
'n_classes':8,
'LABEL_COLUMNS': ['label_analytical', 'label_casual', 'label_confident', 'label_friendly',
       'label_joyful', 'label_optimistic', 'label_respectful',
       'label_urgent'],
'TEXTCOL': 'text',
'rf_labels':['label_analytical', 'label_casual', 'label_confident',
       'label_friendly', 'label_joyful', 'label_optimistic',
       'label_respectful', 'label_urgent',
       'industry_Academic and Education', 'industry_Energy',
       'industry_Entertainment', 'industry_Finance and Banking',
       'industry_Healthcare', 'industry_Hospitality', 'industry_Real Estate',
       'industry_Retail', 'industry_Software and Technology',
       'campaign_type_Abandoned_Cart', 'campaign_type_Engagement',
       'campaign_type_Newsletter', 'campaign_type_Product_Announcement',
       'campaign_type_Promotional', 'campaign_type_Review_Request',
       'campaign_type_Survey', 'campaign_type_Transactional',
       'campaign_type_Usage_and_Consumption', 'campaign_type_Webinar']
}

CI_rates=pd.read_csv('CI_RATES.csv')

### create file uploading widget
def email_upload():
    print("Please upload your email (In EML Format)")
    upload = FileUpload(accept='.eml', multiple=True)
    display(upload)
    return upload

def parse_email(uploaded_file):
    check=[]
    filename = list(uploaded_file.value.keys())[0]
    email_body_str = codecs.decode(uploaded_file.value[filename]['content'], encoding="utf-8")
    b=email.message_from_string(email_body_str)
    for part in b.walk():
        if part.get_content_type():
            body = str(part.get_payload())
            soup = BeautifulSoup(body)
            paragraphs = soup.find_all('body')
            for paragraph in paragraphs:
                check.append(paragraph.text)
            file="".join(check)
    return file


def text_clean(x,punct=True):

    ### Light
    x = x.lower() # lowercase everything
    x = x.encode('ascii', 'ignore').decode()  # remove unicode characters
    x = re.sub(r'https*\S+', ' ', x) # remove links
    x = re.sub(r'http*\S+', ' ', x)
    # cleaning up text
    x = re.sub(r'\'\w+', ' ', x) 
    x = re.sub(r'\w*\d+\w*', ' ', x)
    x = re.sub(r'\s{2,}', ' ', x)
    x = re.sub(r'\s[^\w\s]\s', ' ', x)
    
    ### Heavy
    x = re.sub(r'@\S', ' ', x)
    x = re.sub(r'#\S+', ' ', x)
    x=x.replace('=',' ')
    if(punct==True):
        x = re.sub('[%s]' % re.escape(string.punctuation), ' ', x)
    # remove single letters and numbers surrounded by space
    x = re.sub(r'\s[a-z]\s|\s[0-9]\s', ' ', x)
    clean=[' Â\x8a','\t','\n','Ã\x83','Â\x92','Â\x93','Â\x8a','Â\x95']
    for y in clean:
        x=x.replace(y,'')

    return x

####BERT MODEL LOAD REQUIRMENTS#########


class ToneTagger(pl.LightningModule):
    
    def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None):
        super().__init__()
        self.bert = BertModel.from_pretrained(PARAMS['BERT_MODEL_NAME'], return_dict=True)
        self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.n_training_steps = n_training_steps
        self.n_warmup_steps = n_warmup_steps
        self.criterion = nn.BCELoss()
        
    def forward(self, input_ids, attention_mask):
        output = self.bert(input_ids,attention_mask)
        output = self.classifier(output.pooler_output)
        output = torch.sigmoid(output)    
        return output
    

# LOAD IN PRE TRAINED MODEL WITH WEIGHTS
model=ToneTagger(8) # load up the model archetecture with 8 different tones 
model.load_state_dict(torch.load("models/SAMODEL"), strict=False) # populate the weights of the model
model.eval()



def bert_tones(text_sentences,model):
    """ This function takes in setences and the model cleaned them then predicts the bert tones"""
    predictions=[]
    text=[]
    
    tokenizer = BertTokenizer.from_pretrained('google/bert_uncased_L-2_H-128_A-2')
    for sent in text_sentences:
        text.append(text_clean(sent,False))
        cleaned_text=text_clean(sent)
        encoding = tokenizer.encode_plus(
                    cleaned_text,
                    add_special_tokens=True,
                    max_length=100,
                    return_token_type_ids=False,
                    padding="max_length",
                    truncation=True,
                    return_attention_mask=True,
                    return_tensors='pt',
                )
        with torch.no_grad():
            inputs=encoding['input_ids']
            attention=encoding['attention_mask']
            pred=model(inputs,attention)
            pred=pred.cpu().numpy()
            predictions.append(np.array(pred[0]))
    
    return text,predictions


def convert_text_to_tone(text,model=model,params=PARAMS):
    """ This Function will convert the text to tone, it takes in the text with punctuations seperates it into senteces""" 
    data=[]
    # Find the sentiment from vader sentiment analyzer (Not currently in use)
    sid_obj = SentimentIntensityAnalyzer()
    total_cleaned=text_clean(text)
    sentiment_dict = sid_obj.polarity_scores(total_cleaned)#  Find the sentiment from 
    
    
    text_sentences=tokenize.sent_tokenize(text) #Find all the different sentences through the NLTK library
    
    
    plain_text,predictions=bert_tones(text_sentences,model)
            
    data.append([plain_text,sentiment_dict,predictions])
    final=pd.DataFrame(data,columns=['text','sentiment','sentencetone'])
#     print(final)
    agg_tones=final['sentencetone'].apply(np.mean,axis=0)
    tones=pd.DataFrame(agg_tones.tolist(),columns=params['LABEL_COLUMNS'])
    return final,tones
    

### This will be abstracted away to a more dynamic model 
brf='Rate_Models/bounce_rate_model.sav'
BRM = pickle.load(open(brf, 'rb'))
orf='Rate_Models/open_rate_model.sav'
ORM = pickle.load(open(orf, 'rb'))
urf='Rate_Models/unsubscribe_rate_model.sav'
URM = pickle.load(open(urf, 'rb'))
crf='Rate_Models/click_trough_rate_model.sav'
CRM = pickle.load(open(crf, 'rb'))
CV='Rate_Models/Conversion_rate.sav'
ConM = pickle.load(open(CV, 'rb'))
CTOR='Rate_Models/Click-To-Open_Rates.sav'
CTORM = pickle.load(open(CTOR, 'rb'))
RV='Rate_Models/Revenue_per_email.sav'
RVM = pickle.load(open(RV, 'rb'))

model_dict={'Open_Rate':ORM,
'Click_Through_Rate': CRM, 
'Unsubscribe_Rate': URM,
'Bounce_Rate':BRM,
'Click_To_Open_Rate': CTORM, 
'Conversion_Rate': ConM,
'Revenue_Per_Email':RVM}


## Plot confidence interval
def plot_CI(pred,lower,upper,scale_factor=0.5):
    """This function plots the confidence intervals of your prediction
    pred- The prediction varaible given from the Random Forest for the target variable
    lower- The lower half of the prediction confidence interval 
    upper- The upper half of the confidence interval
    scale_factor- This will modify the size of the graph """
    
    
    title=f'The Predicted Value is {pred}'
    fig = go.Figure()
    fig.update_xaxes(showgrid=False)
    fig.update_yaxes(showgrid=False, 
                     zeroline=True, zerolinecolor='black', zerolinewidth=3,
                     showticklabels=False)
    fig.update_layout(height=200, plot_bgcolor='white')
    fig.add_trace(go.Scatter(
        x=[pred], y=[0,0], mode='markers', marker_size=10,line=dict(color="red")
    ))
    fig.update_layout(xaxis_range=[0,upper+upper*scale_factor])
    fig.update_layout(showlegend=False)
    fig.add_vline(x=lower,annotation_text=f"{lower}",annotation_position="top")
    fig.add_vline(x=upper,annotation_text=f"{upper}",annotation_position="top")
    fig.add_vrect(lower,upper,fillcolor='red',opacity=0.25,annotation_text='95% CI',annotation_position="outside top")
    fig.update_layout(title_text=title, title_x=0.5)
    fig.show()
    
def find_max_cat(df,target,industry,campaign):
    #### Select entries with the matching industry and campaign (1 == True)
    d=df[(df[campaign]==1) & (df[industry]==1)]
    if(len(d)>0):
        rec=df.loc[d[target].idxmax()][3:11]  ## Select the tone values for the best target values
        return round(d[target].min(),3),round(d[target].max(),3),rec  ## select the top target variable value and return with the tones
    else:
        return 0,0,0

    
def scale_values(val, tn):  ## val = slider value, tn = current tone value
    val = tn*100
    return val

tone_labels = ['Analytical', 'Casual', 'Confident', 'Friendly', 'Joyful', 'Optimistic', 'Respectful', 'Urgent']

# ## Plot recommendations - ORIGINAL FROM V1.0
# def recommend(tones,recommend_changes,change,target):
#     ''' This function creates the recomended changes plots it takes it the tones, the changes and '''
#     fig = go.Figure()
#     fig.add_trace(go.Bar(
#         y=tones.columns,
#         x=tones.values[0],
#         name='Current Tones',
#         orientation='h',
#        # text=np.round(tones.values[0],3),
#         width=.9,
#         marker=dict(
#             color='#00e6b1',
#             line=dict(color='rgba(58, 71, 80, 1.0)', width=3)
#         )

#     ))
#     fig.add_trace(go.Bar(
#         y=tones.columns,
#         x=recommend_changes,
#         name='Recommend changes',
#         orientation='h',
#         text=np.round(recommend_changes,3),
#         width=.5,
#         marker=dict(
#             color='#e60f00',
#             line=dict(color='rgba(58, 71, 80, 1.0)', width=3)
#         )
#     ))
#     fig.update_traces(textfont_size=18, textposition="outside", cliponaxis=False)
#     fig.update_layout(height=1000, plot_bgcolor='white')
#     fig.update_layout(barmode='stack', yaxis={'categoryorder':'array','categoryarray': recommend_changes.sort_values(key=abs,ascending=True).index})
#     fig.update_layout(title_text=f'The following Changes will yield a {round(change,3)} increase in {target}')
#     fig.show()
    
## Plot recommendations - MODIFIED
def recommend(tones,recommend_changes,change,target):
    ''' This function creates the recomended changes plots it takes it the tones, the changes and '''
    
    fig = go.Figure()
    fig.add_trace(go.Bar(
#         y=tones.columns,
        y=tone_labels,
        x=recommend_changes,
        name='Recommend changes',
        orientation='h',
        text=np.round(recommend_changes,3),
        width=.5,
        marker=dict(
            color='#e60f00',
            line=dict(color='rgba(58, 71, 80, 1.0)', width=1)
        )
    ))
    fig.update_traces(textfont_size=18, textposition="outside", cliponaxis=False)
#     fig.update_layout(height=1000, plot_bgcolor='white')
#     fig.update_layout(barmode='stack', yaxis={'categoryorder':'array','categoryarray': recommend_changes.sort_values(key=abs,ascending=True).index})
#     fig.update_layout(title_text=f'The following Changes will yield a {round(change,3)} increase in {target}')
    if target == 'Revenue_Per_Email':
        out = f"${round(change,2)}"
    else:
        out = f"{round(change,2)*100}%"
    fig.update_layout(title_text=f'The following Changes will yield a {out} increase in {target}')
    fig.show()
    
        
def prediction(tones,campaign_val,industry_val,target):
    model_val=pd.DataFrame(tones,columns=PARAMS['rf_labels']).fillna(0)
    model_val.loc[0,campaign_val]=1
    model_val.loc[0,industry_val]=1
    model=model_dict[target]
    pred=model.predict(model_val)[0]
    
#     y_pred = regr.predict(X_test)
#     r2_test = r2_score(y_test, y_pred)
    
    CI=CI_rates[CI_rates['model']==target]
    lower=pred+CI['2_5'].values[0]
    higher=pred+CI['97_5'].values[0]
    return pred,round(lower,3),round(higher,3),model


## Plot recommendations for intensity changes
def intensity_changes(tones,recommend_changes,change,target):
    ''' This function creates a plot to show the change made to intensities and shows the resulting change in target rate '''
    
    fig = go.Figure()
    fig.add_trace(go.Bar(
#         y=tones.columns,
        y=tone_labels,
        x=recommend_changes,
        name='Recommend changes',
        orientation='h',
        text=np.round(recommend_changes,3),
        width=.5,
        marker=dict(
            color='#00e6b1',
            line=dict(color='rgba(58, 71, 80, 1.0)', width=1)
        )
    ))
    fig.update_traces(textfont_size=18, textposition="outside", cliponaxis=False)
        
    if change < 0:
        if target == 'Revenue_Per_Email':
            out = f"${round(change*(-1),2)}"
        else:
            out = f"{round(change*(-1),2)}%"
        
        fig.update_layout(title_text=f'The following Changes will decrease the {target} by {out}')
        
    elif change >= 0:
        if target == 'Revenue_Per_Email':
            out = f"${round(change,2)}"
        else:
            out = f"{round(change,2)*100}%"
        fig.update_layout(title_text=f'The following Changes will increase the {target} by {out}')
        
#     fig.update_layout(title_text=f'The changes made to the tone intensities')
    fig.show()
    

def load_data():
    data_location='Tone_and_target.csv'
    df=pd.read_csv(data_location)
    df_unique = df.drop_duplicates()
    df_unique = pd.get_dummies(df_unique, columns=['industry','campaign_type'])
    df_data=df_unique.drop(columns=['Unnamed: 0','body'])
    df_data=df_data.rename(columns={'Click-To-Open Rates':'Click_To_Open_Rate','Conversion Rate':'Conversion_Rate','Revenue Per email':'Revenue_Per_Email'})
    return df_data


def plot_table(sorted_setence_tuple):
    """ Plots the bottom most table, takes in a list of tuples where the tuple is the sentence  the sentiment distance 
    from the best values """
    sentences=list(zip(*sorted_setence_tuple))[0]
    scores= list(zip(*sorted_setence_tuple))[1]
    colors= list(zip(*sorted_setence_tuple))[2]
    rbg_list=[]
    for i in colors:
        rbg_list.append('rgb'+str(i))
    fig = go.Figure(data=[go.Table(
    header=dict(values=['<b>Sentences</b>', '<b>Difference from Recommended Tone</b>'],
                line_color = 'darkslategray',
                fill_color = '#010405',
                align = 'center',
                font=dict(family="Metropolis",color='white', size=16)),
    cells=dict(values=[sentences, # 1st column
                       scores] , # 2nd column
               line_color='darkslategray',
               fill_color=[rbg_list],
               align=['left','center'],
               font=dict(family="Arial",size=12)))
    ])

    #fig.show()
    
def corrections(best,df):
    """This function finds the the difference between the tone of each sentence and the  best tone for the desired metric
    best- tone values of the best email for the current categories 
    df- dataframe of the sentences of the uploaded email and the """
    sentence_order=[]
    colors=['#48f0c9','#6ef5d6','#94f7e1','#bbfaec','#e6fff9','#ffe7e6','#ffc3bf','#ffa099','#ff7c73','#ff584d'] #loxz green primary to Loxz light red 
    for i in range(len(df['sentencetone'][0])):
        text=df['text'][0][i]
        cur=df['sentencetone'][0][i]
        cosine_distance= spatial.distance.cosine(best,cur)
        distance=cosine_distance # Cosine distance
        new_value = round(( (distance - 0) / (1 - 0) ) * (100 - 0) + 0) # for distance metric this is just normalizing the varaible
        color_value=round(( (distance - 0) / (1 - 0) ) * (10  - 0) + 0) # Color whell value 
        col=colors[(color_value)]
        rbg=ImageColor.getcolor(f'{col}', "RGB")
        sentence_order.append((text,new_value,rbg))
        sorted_sentences=sorted(sentence_order,key=lambda x: x[1],reverse=True)
    plot_table(sorted_sentences)
        
def read_file(fc):
    with open(fc.selected) as file: # Use file to refer to the file object
        data = file.read()
    check=[]
    b=email.message_from_string(data)
    for part in b.walk():
            if part.get_content_type():
                body = str(part.get_payload())
                soup = BeautifulSoup(body)
                paragraphs = soup.find_all('body')
                for paragraph in paragraphs:
                    check.append(paragraph.text)
                file="".join(check)
    return file