File size: 78,404 Bytes
f257153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
"""
Dataset creation tools.

Keep to-level imports clean of non-trivial imports for specific tools,
because this file is imported for various purposes
"""

import ast
import concurrent.futures
import contextlib
import hashlib
import json
import os
import shutil
import signal
import sys
import traceback
from concurrent.futures import ProcessPoolExecutor

import psutil
import pytest
import pandas as pd
import numpy as np
from tqdm import tqdm

from utils import flatten_list, remove


def parse_rst_file(filepath):
    with open(filepath, 'r') as f:
        input_data = f.read()
    settings_overrides = {'initial_header_level': 2}
    from docutils import core
    document = core.publish_doctree(
        source=input_data,
        source_path=filepath,
        settings_overrides=settings_overrides,
    )
    qa_pairs = []
    current_section = None
    current_question = ""
    current_answer = ""
    for node in document.traverse():
        if node.__class__.__name__ == 'section':
            current_section = ""
        elif current_section is not None:
            if node.__class__.__name__ == 'Text':
                if node.astext()[-1] == "?":
                    if current_question:
                        qa_pairs.append((current_question, current_answer))
                    current_question = node.astext()
                    current_answer = ""
                else:
                    current_answer += node.astext()
    if current_answer:
        qa_pairs.append((current_question, current_answer))
    return {k: v for k, v in qa_pairs}


def test_scrape_dai_docs():
    home = os.path.expanduser('~')
    file = os.path.join(home, 'h2oai/docs/faq.rst')
    qa_pairs = parse_rst_file(file)
    prompt_type = 'human_bot'
    from prompter import prompt_types
    assert prompt_type in prompt_types
    save_thing = [{"instruction": k, "output": v, 'prompt_type': prompt_type} for k, v in qa_pairs.items()]
    output_file = "dai_faq.json"
    with open(output_file, "wt") as f:
        f.write(json.dumps(save_thing, indent=2))


def test_scrape_dai_docs_all():
    """
    pytest create_data.py::test_scrape_dai_docs_all
    """
    import glob
    import nltk
    nltk.download('punkt')
    dd = {}
    np.random.seed(1234)
    home = os.path.expanduser('~')
    files = list(glob.glob(os.path.join(home, "h2oai/docs/**/*rst")))
    np.random.shuffle(files)
    val_count = int(0.05 * len(files))
    train_files = files[val_count:]
    valid_files = files[:val_count]
    things = [
        ("dai_docs.train.json", train_files),
        ("dai_docs.valid.json", valid_files)
    ]
    for LEN in [100, 200, 500]:
        for output_file, ff in things:
            if output_file not in dd:
                dd[output_file] = []
            for f in ff:
                with open(f) as input:
                    blob = input.read()
                    blob = blob.replace("~~", "")
                    blob = blob.replace("==", "")
                    blob = blob.replace("''", "")
                    blob = blob.replace("--", "")
                    blob = blob.replace("**", "")
                    dd[output_file].extend(get_sentences(blob, length=LEN))
    for output_file, _ in things:
        save_thing = [{"output": k.strip(), 'prompt_type': 'plain'} for k in dd[output_file]]
        with open(output_file, "wt") as f:
            f.write(json.dumps(save_thing, indent=2))


def get_sentences(blob, length):
    """
    break-up input text into sentences and then output list of sentences of about length in size
    :param blob:
    :param length:
    :return:
    """
    import nltk
    nltk.download('punkt')
    from nltk.tokenize import sent_tokenize
    sentences = sent_tokenize(blob)
    my_sentences = []
    my_string = ""
    for sentence in sentences:
        if len(my_string) + len(sentence) <= length:
            if my_string:
                my_string += " " + sentence
            else:
                my_string = sentence
        else:
            my_sentences.append(my_string)
            my_string = ""
    return my_sentences or [my_string]


def setup_dai_docs(path=None, dst="working_dir_docs", from_hf=False):
    """
    Only supported if have access to source code or HF token for HF spaces and from_hf=True
    :param path:
    :param dst:
    :param from_hf:
    :return:
    """

    home = os.path.expanduser('~')

    if from_hf:
        # assumes
        from huggingface_hub import hf_hub_download
        # True for case when locally already logged in with correct token, so don't have to set key
        token = os.getenv('HUGGINGFACE_API_TOKEN', True)
        path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.zip', token=token, repo_type='dataset')
        path = 'h2oai'
        import zipfile
        with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
            zip_ref.extractall(path)
        path = os.path.join(path, 'docs/**/*')

    if path is None:
        if os.path.isdir(os.path.join(home, 'h2oai')):
            path = os.path.join(home, "h2oai/docs/**/*")
        else:
            assert os.path.isdir(os.path.join(home, 'h2oai.superclean')), '%s does not exist' % path
            path = os.path.join(home, "h2oai.superclean/docs/**/*")
    import glob
    files = list(glob.glob(path, recursive=True))

    # pandoc can't find include files

    remove(dst)
    os.makedirs(dst)

    # copy full tree, for absolute paths in rst
    for fil in files:
        if os.path.isfile(fil):
            shutil.copy(fil, dst)

    # hack for relative path
    scorers_dir = os.path.join(dst, 'scorers')
    makedirs(scorers_dir)
    for fil in glob.glob(os.path.join(dst, '*.frag')):
        shutil.copy(fil, scorers_dir)

    return dst


def rst_to_outputs(files, min_len=30, max_len=2048 // 2 - 30):
    # account for sequence length (context window) including prompt and input and output

    # os.system('pandoc -f rst -t plain ./expert_settings/nlp_settings.rst')
    import pypandoc
    basedir = os.path.abspath(os.getcwd())

    outputs = []
    for fil in files:
        os.chdir(basedir)
        os.chdir(os.path.dirname(fil))
        fil = os.path.basename(fil)
        print("Processing %s" % fil, flush=True)
        # out_format can be one of: asciidoc, asciidoctor, beamer, biblatex, bibtex, commonmark, commonmark_x,
        # context, csljson, docbook, docbook4, docbook5, docx, dokuwiki,
        # dzslides, epub, epub2, epub3, fb2, gfm, haddock, html, html4, html5, icml,
        # ipynb, jats, jats_archiving, jats_articleauthoring, jats_publishing, jira,
        # json, latex, man,
        # markdown, markdown_github, markdown_mmd, markdown_phpextra, markdown_strict,
        # mediawiki, ms, muse, native, odt, opendocument, opml, org, pdf, plain, pptx,
        # revealjs, rst, rtf, s5, slideous, slidy, tei, texinfo, textile, xwiki, zimwiki
        out_format = 'plain'
        # avoid extra new lines injected into text
        extra_args = ['--wrap=preserve', '--resource path="%s" % dst']

        plain_list = []
        try:
            # valid for expert settings
            input_rst = pypandoc.convert_file(fil, 'rst')
            input_list = input_rst.split('\n``')
            for input_subrst in input_list:
                input_plain = pypandoc.convert_text(input_subrst, format='rst', to='plain')
                plain_list.append([input_plain, fil])
        except Exception as e:
            print("file exception: %s %s" % (fil, str(e)), flush=True)

        if not plain_list:
            # if failed to process as pieces of rst, then
            output = pypandoc.convert_file(fil, out_format, extra_args=extra_args, format='rst')
            outputs1 = get_sentences(output, length=max_len)
            for oi, output in enumerate(outputs1):
                output = output.replace('\n\n', '\n')
                plain_list.append([output, fil])
        outputs.extend(plain_list)

    # report:
    # [print(len(x)) for x in outputs]

    # deal with blocks longer than context size (sequence length) of 2048
    new_outputs = []
    num_truncated = 0
    num_orig = len(outputs)
    for output, fil in outputs:
        if len(output) < max_len:
            new_outputs.append([output, fil])
            continue
        outputs1 = get_sentences(output, length=max_len)
        for oi, output1 in enumerate(outputs1):
            output1 = output1.replace('\n\n', '\n')
            new_outputs.append([output1, fil])
        num_truncated += 1
    print('num_orig: %s num_truncated: %s' % (num_orig, num_truncated), flush=True)

    new_outputs = [[k.strip(), fil] for k, fil in new_outputs if len(k.strip()) > min_len]

    return new_outputs


def test_scrape_dai_docs_all_pandoc():
    """
    pytest -s -v create_data.py::test_scrape_dai_docs_all_pandoc
    :return:
    """

    dst = setup_dai_docs()

    import glob
    files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))

    basedir = os.path.abspath(os.getcwd())
    new_outputs = rst_to_outputs(files)
    os.chdir(basedir)

    remove(dst)
    save_thing = [{"output": k.strip(), 'prompt_type': 'plain'} for k in new_outputs]
    output_file = "dai_docs.train_cleaned.json"
    with open(output_file, "wt") as f:
        f.write(json.dumps(save_thing, indent=2))


def test_config_to_json():
    """
    Needs to run from Driverless AI source directory.
    E.g. (base) jon@gpu:~/h2oai$ pytest -s -v /data/jon/h2ogpt/create_data.py::test_config_to_json ; cp config.json /data/jon/h2ogpt/
    :return:
    """
    try:
        # Arrange
        import json
        from h2oaicore.systemutils import config
        toml_list = []
        for k, v in config.get_meta_dict().items():
            title = (v.title + ": ") if v.title else ''
            comment = v.comment or ''
            if not (title or comment):
                continue
            toml_list.extend(
                [
                    {
                        'prompt_type': 'plain',
                        'instruction': f"<human>: What does {k} do?\n<bot>: {k.replace('_', ' ')} config.toml:  {comment or title}\n<human>:".replace(
                            "\n", ""),
                    },
                    {
                        'prompt_type': 'plain',
                        'instruction': f"<human>: Explain {k}.\n<bot>: {k.replace('_', ' ')} config.toml:  {comment or title}\n<human>:".replace(
                            "\n", ""),
                    },
                    {
                        'prompt_type': 'plain',
                        'instruction': f"<human>: How can I do this: {title}.\n<bot>: Set the {k.replace('_', ' ')} config.toml\n<human>:".replace(
                            "\n", ""),
                    } if title and comment else None,
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Explain the following expert setting for Driverless AI',
                        'input': f"{k}",
                        'output': f"{k.replace('_', ' ')} config.toml: {comment or title}".replace("\n", ""),
                    },
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Explain the following expert setting for Driverless AI',
                        'input': f"{k}",
                        'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
                    },
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Explain the following expert setting for Driverless AI',
                        'input': f"{k.replace('_', ' ')}",
                        'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
                    },
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Explain the following expert setting for Driverless AI',
                        'input': f"{title}",
                        'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
                    },
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Provide a short explanation of the expert setting {k}',
                        'output': f"{k.replace('_', ' ')} config.toml: {comment or title}".replace("\n", ""),
                    },
                    {
                        'prompt_type': 'human_bot',
                        'instruction': f'Provide a detailed explanation of the expert setting {k}',
                        'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
                    },
                ]
            )
        toml_list = [x for x in toml_list if x]
        with open("config.json", "wt") as f:
            f.write(json.dumps(toml_list, indent=2))
    except Exception as e:
        print("Exception: %s" % str(e), flush=True)


def copy_tree(src, dst, follow_symlink=False):
    makedirs(dst, exist_ok=True)
    for (path, dirs, files) in os.walk(src, followlinks=follow_symlink):
        new_path = path.replace(src, dst)
        makedirs(new_path, exist_ok=True)
        for file in files:
            filename = os.path.join(path, file)
            new_filename = os.path.join(new_path, file)
            # print("%s -> %s" % (filename, new_filename))
            try:
                atomic_copy(filename, new_filename)
            except FileNotFoundError:
                pass


def atomic_move(src, dst):
    try:
        shutil.move(src, dst)
    except (shutil.Error, FileExistsError):
        pass
    remove(src)


def atomic_copy(src=None, dst=None, with_permissions=True):
    if os.path.isfile(dst):
        return
    import uuid
    my_uuid = uuid.uuid4()
    dst_tmp = dst + str(my_uuid)
    makedirs(os.path.dirname(dst), exist_ok=True)
    if with_permissions:
        shutil.copy(src, dst_tmp)
    else:
        shutil.copyfile(src, dst_tmp)
    atomic_move(dst_tmp, dst)
    remove(dst_tmp)


def makedirs(path, exist_ok=True):
    """
    Avoid some inefficiency in os.makedirs()
    :param path:
    :param exist_ok:
    :return:
    """
    if os.path.isdir(path) and os.path.exists(path):
        assert exist_ok, "Path already exists"
        return path
    os.makedirs(path, exist_ok=exist_ok)


## Download from https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_unfiltered_cleaned_split.json
## Turn into simple instruct prompt type. No context/previous conversations.
def test_prep_instruct_vicuna():
    from datasets import load_dataset
    filename = 'ShareGPT_unfiltered_cleaned_split.json'
    if not os.path.exists(filename):
        os.system(
            'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % filename)
    data = load_dataset("json", data_files={"train": filename})["train"]
    training_rows = []
    for i in range(data.num_rows):
        conversations = data[i]['conversations']
        assert isinstance(conversations, list), conversations
        convo = ""
        for j, conv in enumerate(conversations):
            # Get ready for generate.py prompt_type=human_bot
            # But train with prompt_type=plain
            if conv['from'] == 'human':
                FROM = '<human>: '
            elif conv['from'] == 'gpt':
                FROM = '<bot>: '
            convo += f"{FROM}" + conv['value'] + "\n"
        if convo:
            training_rows.append(dict(input=convo))
    with open(filename + ".generate_human_bot.train_plain.json", "wt") as f:
        f.write(json.dumps(training_rows, indent=2))


POSTFIX = ".generate_human_bot.train_plain.json"

# https://bair.berkeley.edu/blog/2023/04/03/koala/
OIG_DATASETS = [
    "unified_chip2.jsonl",
    "unified_grade_school_math_instructions.jsonl",
    "unified_poetry_2_song.jsonl",
    "unified_plot_screenplay_books_dialog.jsonl",
]

# hub issue: https://huggingface.co/datasets/laion/OIG/discussions/4
ALL_OIG_DATASETS = ['unified_abstract_infill.jsonl',
                    'unified_basic.jsonl',
                    'unified_canadian_parliament.jsonl',
                    'unified_chip2.jsonl',
                    'unified_conv_finqa.jsonl',
                    'unified_cuad.jsonl',
                    'unified_essays.jsonl',
                    'unified_flan.jsonl.gz',
                    'unified_grade_school_math_instructions.jsonl',
                    'unified_hc3_human.jsonl',
                    'unified_image_prompts_instructions.jsonl',
                    'unified_joke_explanations.jsonl',
                    'unified_mathqa_flanv2_kojma_cot.jsonl',
                    'unified_merged_code_xp3.jsonl',
                    'unified_multi_news.jsonl',
                    'unified_multi_sum.jsonl',
                    'unified_ni.jsonl.gz',
                    'unified_nq.jsonl',
                    'unified_openai_summarize_tldr.jsonl',
                    'unified_oscar_en_sample_dialog.jsonl',
                    'unified_p3.jsonl.gz',
                    'unified_plot_screenplay_books_dialog.jsonl',
                    'unified_poetry_2_song.jsonl',
                    'unified_poetry_instructions.jsonl',
                    'unified_rallio_safety_and_prosocial.jsonl',
                    'unified_rallio_soda_upgraded_2048.jsonl',
                    'unified_soda_dialog.jsonl',
                    'unified_sqlv1.jsonl',
                    'unified_sqlv2.jsonl',
                    'unified_squad_v2.jsonl',
                    'unified_squad_v2_more_neg.jsonl',
                    'unified_ul2_plus_oscar_en_sample_dialog.jsonl',
                    'unified_unifiedskg_instructions.jsonl',
                    'unified_unnatural_instructions.jsonl',
                    'unified_xp3_sample.jsonl']

useful_oig_files = ['unified_rallio_safety_and_prosocial.jsonl.parquet',
                    'unified_chip2.jsonl.parquet',
                    'unified_cuad.jsonl.parquet',
                    'unified_essays.jsonl.parquet',
                    'unified_flan.jsonl.gz.parquet',
                    'unified_grade_school_math_instructions.jsonl.parquet',
                    'unified_hc3_human.jsonl.parquet',
                    'unified_mathqa_flanv2_kojma_cot.jsonl.parquet',
                    'unified_merged_code_xp3.jsonl.parquet',
                    'unified_multi_news.jsonl.parquet',
                    # 'unified_multi_sum.jsonl.parquet'
                    'unified_ni.jsonl.gz.parquet',
                    'unified_openai_summarize_tldr.jsonl.parquet',
                    # 'unified_oscar_en_sample_dialog.jsonl.parquet', # create text containing these N words, not specific
                    'unified_plot_screenplay_books_dialog.jsonl.parquet',
                    'unified_soda_dialog.jsonl.parquet',
                    'unified_unnatural_instructions.jsonl.parquet',
                    ]


@pytest.mark.parametrize("filename", OIG_DATASETS)
def test_get_small_sample_oig_data(filename):
    if not os.path.exists(filename):
        os.system('wget https://huggingface.co/datasets/laion/OIG/resolve/main/%s' % filename)
    import json
    rows = []
    with open(filename, "r") as f:
        for line in f.readlines():
            row = json.loads(line)
            rows.append(dict(input=row["text"]))
    with open(filename + POSTFIX, "w") as f:
        f.write(json.dumps(rows, indent=2))


@pytest.mark.parametrize("filename", ALL_OIG_DATASETS)
def test_download_useful_data_as_parquet(filename):
    dest_file = filename + '.parquet'
    if dest_file not in useful_oig_files:
        pytest.skip('file declared not useful')
    if not os.path.exists(filename):
        os.system('wget https://huggingface.co/datasets/laion/OIG/resolve/main/%s' % filename)
    if not os.path.exists(dest_file):
        df = pd.read_json(path_or_buf=filename, lines=True)
        df.to_parquet(dest_file, index=False)


def test_merge_shuffle_small_sample_oig_data():
    np.random.seed(1234)
    rows = []
    for filename in OIG_DATASETS:
        with open(filename + POSTFIX, "r") as f:
            rows.extend(json.loads(f.read()))
    np.random.shuffle(rows)
    with open("merged_shuffled_OIG_%s.json" % hashlib.sha256(str(OIG_DATASETS).encode()).hexdigest()[:10], "w") as f:
        f.write(json.dumps(rows, indent=2))


def test_join_jsons():
    files = ['config.json'] * 1 + \
            ['dai_docs.train_cleaned.json'] * 2 + \
            ['dai_faq.json'] * 3
    print(files)
    lst = []
    [lst.extend(json.load(open(fil, 'rt'))) for fil in files]
    print(len(lst))
    json.dump(lst, open("merged.json", "wt"), indent=2)


@pytest.mark.parametrize("filename", ['Anthropic/hh-rlhf'])
def test_make_rlhf_good_data(filename):
    from datasets import load_dataset
    rows = load_dataset(filename)["train"]["chosen"]
    new_rows = []
    for row in rows:
        if row[:2] == "\n\n":
            row = row[2:]
        row = row.replace("Human: ", "<human>: ")
        row = row.replace("Assistant: ", "<bot>: ")
        new_rows.append(dict(input=row))
    with open(filename.replace("/", "_") + POSTFIX, "w") as f:
        f.write(json.dumps(new_rows, indent=2))


def test_show_prompts():
    files = ['config.json'] * 1 + \
            ['dai_docs.train_cleaned.json'] * 1 + \
            ['dai_faq.json'] * 1
    file_points = [json.load(open(fil, 'rt')) for fil in files]
    from prompter import generate_prompt
    for data_points in file_points:
        for data_point in data_points:
            print(generate_prompt(data_point, 'plain', '', False, False, False)[0])


def test_get_open_datasets():
    # HF changed things so don't get raw list of all datasets, so not have to filter, but can't do negative filter
    open_tags = ['license:Apache License 2.0',
                 'license:mit',
                 'license:apache',
                 'license:apache2',
                 'license:apache-2.0',
                 'license:bsd',
                 'license:bsd-2-clause',
                 'license:bsd-3-clause',
                 'license:bsd-3-clause-clear',
                 'license:lgpl-2.1',
                 'license:lgpl-3.0',
                 'license:lgpl-lr',
                 'license:lgpl',
                 'license:openrail++',
                 'license:openrail',
                 'license:bigscience-bloom-rail-1.0',
                 # 'license:agpl-3.0',
                 'license:other',
                 'license:unknown',
                 # 'license:mpl-2.0',     # ok, but would have to include original copyright, license, source, copies in distribution
                 # Attribution required:
                 'license:odc-by',
                 'license:cc-by-4.0',
                 'license:cc-by-3.0',
                 'license:cc-by-2.0',
                 'license:cc-by-2.5',
                 # 'license:cc-by-sa-4.0',  # would require same license
                 'license:odbl',
                 'license:pddl',
                 'license:ms-pl',
                 'license:zlib',
                 ]
    # bad license: cc-by-nc-4.0

    from huggingface_hub import list_datasets
    datasets = flatten_list([[x for x in list_datasets(filter=y)] for y in open_tags])
    datasets += [x for x in list_datasets(author='openai')]
    # check all:
    all_license_tags = set(flatten_list([[y for y in x.tags if 'license' in y] for x in datasets]))
    print(len(all_license_tags))
    open_datasets = [x for x in datasets if any([y in x.tags for y in open_tags]) or 'license:' not in str(x.tags)]
    print('open_datasets', len(open_datasets))
    all_task_tags = set(flatten_list([[y for y in x.tags if 'task' in y] for x in open_datasets]))
    print('all_task_tags', len(all_task_tags))
    excluded_tags = ['image', 'hate', 'tabular', 'table-', 'classification', 'retrieval',
                     'translation', 'identification', 'object', 'mask', 'to-text',
                     'face-detection', 'audio', 'voice', 'reinforcement', 'depth-est',
                     'forecasting', 'parsing', 'visual', 'speech', 'multiple-choice',
                     'slot-filling', 'irds/argsme', '-scoring', 'other', 'graph-ml',
                     'feature-extraction', 'keyword-spotting',
                     'coreference-resolution', 'segmentation',
                     'word-sense-disambiguation',
                     'lemmatization']
    task_tags = [x.replace('task_categories:', '').replace('task_ids:', '')
                 for x in all_task_tags if not any([y in x for y in
                                                    excluded_tags])]
    print('task_tags', len(task_tags))
    # str(x.tags) to catch any pattern match to anything in list
    open_tasked_datasets = [x for x in open_datasets if
                            any([y in str([x for x in x.tags if 'task' in x]) for y in task_tags]) and
                            not any([y in str([x for x in x.tags if 'task' in x]) for y in excluded_tags]) or
                            'task_categories' not in str(x.tags) and 'task_ids' not in str(x.tags)]
    open_tasked_datasets = [x for x in open_tasked_datasets if not x.disabled]
    open_tasked_datasets = [x for x in open_tasked_datasets if not x.gated]
    open_tasked_datasets = [x for x in open_tasked_datasets if not x.private]
    print('open_tasked_datasets', len(open_tasked_datasets))
    sizes = list(set(flatten_list([[(y, x.id) for y in x.tags if 'size' in y] for x in open_tasked_datasets])))
    languages = list(set(flatten_list([[(y, x.id) for y in x.tags if 'language:' in y] for x in open_tasked_datasets])))
    open_english_tasked_datasets = [x for x in open_tasked_datasets if
                                    'language:' not in str(x.tags) or
                                    'language:en' in str(x.tags)]
    small_open_english_tasked_datasets = [x for x in open_english_tasked_datasets if
                                          'n<1K' in str(x.tags) or
                                          '1K<n<10K' in str(x.tags) or
                                          '1K0<n<100K' in str(x.tags) or
                                          '100K<n<1M' in str(x.tags) or
                                          'size_category' not in str(x.tags)
                                          ]
    # 'aeslc' : email_body, subject -> summarization?
    # load_dataset(open_tasked_datasets[0].id).data['train'].to_pandas()
    ids = [x.id for x in small_open_english_tasked_datasets]

    # sanity checks
    # https://bair.berkeley.edu/blog/2023/04/03/koala/
    assert 'alespalla/chatbot_instruction_prompts' in ids
    assert 'laion/OIG' in ids
    assert 'openai/webgpt_comparisons' in ids
    assert 'openai/summarize_from_feedback' in ids
    assert 'Anthropic/hh-rlhf' in ids

    # useful but not allowed for commercial purposes:
    # https://huggingface.co/datasets/squad

    print('open_english_tasked_datasets: ', ids, flush=True)

    exclude_ids = ['allenai/nllb',  # translation only
                   'hf-internal-testing/fixtures_image_utils',  # testing
                   'allenai/c4',  # search-url
                   'agemagician/uniref50',  # unknown
                   'huggingface-course/documentation-images',  # images
                   'smilegate-ai/kor_unsmile',  # korean
                   'MohamedRashad/ChatGPT-prompts',  # ChatGPT/LearnGPT/https://www.emergentmind.com/
                   'humarin/chatgpt-paraphrases',  # Paraphrase using ChatGPT
                   'Jeska/vaccinchat',  # not useful
                   'alespalla/chatbot_instruction_prompts',  # mixes alpaca
                   'allenai/prosocial-dialog',
                   # already exlucded, but wrongly in other datasets that say more permissive license
                   'AlekseyKorshuk/persona-chat',  # low quality
                   'bavard/personachat_truecased',  # low quality
                   'adamlin/daily_dialog',  # medium quality conversations
                   'adamlin/FewShotWoz',  # low quality
                   'benjaminbeilharz/better_daily_dialog',  # low quality
                   'benjaminbeilharz/daily_dialog_w_turn_templates',  # low
                   'benjaminbeilharz/empathetic_dialogues_for_lm',  # low
                   'GEM-submissions/GEM__bart_base_schema_guided_dialog__1645547915',  # NA
                   'ia-bentebib/conv_ai_2_fr',  # low fr
                   'ia-bentebib/daily_dialog_fr',  # low fr
                   'ia-bentebib/dialog_re_fr',  # low fr
                   'ia-bentebib/empathetic_dialogues_fr',  # low fr
                   'roskoN/dailydialog',  # low
                   'VadorMazer/skyrimdialogstest',  # low
                   'bigbio/med_qa',  # med specific Q/A
                   'biu-nlp/qa_srl2018',  # low quality Q/A
                   'biu-nlp/qa_discourse',  # low quality Q/A
                   'iarfmoose/qa_evaluator',  # low quality Q/A
                   'jeopardy',  # low quality Q/A -- no reasoning
                   'narrativeqa',  # low quality Q/A
                   'nomic-ai/gpt4all_prompt_generations',  # bad license
                   'nomic-ai/gpt4all_prompt_generations_with_p3',  # bad license
                   'HuggingFaceH4/alpaca',  # bad license
                   'tatsu-lab/alpaca',  # ToS breaking
                   'yahma/alpaca-cleaned',  # ToS breaking
                   'Hello-SimpleAI/HC3',  # bad license
                   'glue',  # no reasoning QA
                   'sahil2801/CodeAlpaca-20k',  # bad license
                   'Short-Answer-Feedback/saf_communication_networks_english',  # long Q, medium A
                   ]
    small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if x.id not in exclude_ids]
    # some ids clearly speech related
    small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if 'speech' not in x.id]
    # HF testing
    small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if
                                          'hf-internal-testing' not in x.id]
    small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if
                                          'chinese' not in x.id]

    sorted_small_open_english_tasked_datasets = sorted([(x.downloads, x) for x in small_open_english_tasked_datasets],
                                                       key=lambda x: x[0], reverse=True)

    # NOTES:
    # Run like pytest -s -v create_data.py::test_get_open_datasets &> getdata9.log
    # See what needs config passed and add:
    # grep 'load_dataset(' getdata9.log|grep -v data_id|less -S
    # grep "pip install" getdata9.log
    # NOTE: Some datasets have default config, but others are there.  Don't know how to access them.

    """
    https://huggingface.co/datasets/wikihow/blob/main/wikihow.py
    https://github.com/mahnazkoupaee/WikiHow-Dataset
    https://ucsb.box.com/s/ap23l8gafpezf4tq3wapr6u8241zz358
    https://ucsb.app.box.com/s/ap23l8gafpezf4tq3wapr6u8241zz358
    """

    """
    # some ambiguous or non-commercial datasets
    https://github.com/PhoebusSi/alpaca-CoT
    """

    timeout = 3 * 60
    # laion/OIG takes longer
    for num_downloads, dataset in sorted_small_open_english_tasked_datasets:
        data_id = dataset.id
        func = do_one
        args = (data_id, num_downloads)
        kwargs = {}
        with ProcessPoolExecutor(max_workers=1) as executor:
            future = executor.submit(func, *args, **kwargs)
            try:
                future.result(timeout=timeout)
            except concurrent.futures.TimeoutError:
                print("\n\ndata_id %s timeout\n\n" % data_id, flush=True)
            for child in psutil.Process(os.getpid()).children(recursive=True):
                os.kill(child.pid, signal.SIGINT)
                os.kill(child.pid, signal.SIGTERM)
                os.kill(child.pid, signal.SIGKILL)


def do_one(data_id, num_downloads):
    from datasets import load_dataset
    out_file = "data_%s.parquet" % str(data_id.replace('/', '_'))
    if os.path.isfile(out_file) and os.path.getsize(out_file) > 1024 ** 3:
        return
    try:
        print("Loading data_id %s num_downloads: %s" % (data_id, num_downloads), flush=True)
        avail_list = None
        try:
            data = load_dataset(data_id, 'foobar')
        except Exception as e:
            if 'Available: ' in str(e):
                avail_list = ast.literal_eval(str(e).split('Available:')[1].strip())
            else:
                avail_list = None
        if avail_list is None:
            avail_list = [None]
        print("%s avail_list: %s" % (data_id, avail_list), flush=True)

        for name in avail_list:
            out_file = "data_%s_%s.parquet" % (str(data_id.replace('/', '_')), str(name))
            if os.path.isfile(out_file):
                continue
            data = load_dataset(data_id, name)
            column_names_dict = data.column_names
            column_names = column_names_dict[list(column_names_dict.keys())[0]]
            print("Processing data_id %s num_downloads: %s columns: %s" % (data_id, num_downloads, column_names),
                  flush=True)
            data_dict = data.data
            col_dict = data.num_columns
            first_col = list(col_dict.keys())[0]
            if 'train' in data_dict:
                df = data['train'].to_pandas()
            else:
                df = data[first_col].to_pandas()
            # csv has issues with escaping chars, even for datasets I know I want
            df.to_parquet(out_file, index=False)
    except Exception as e:
        t, v, tb = sys.exc_info()
        ex = ''.join(traceback.format_exception(t, v, tb))
        print("Exception: %s %s" % (data_id, ex), flush=True)


def test_otherlic():
    from huggingface_hub import list_datasets
    lic = ['license:odc-by',
           'license:cc-by-4.0',
           'license:cc-by-3.0',
           'license:cc-by-2.0',
           'license:cc-by-2.5',
           'license:cc-by-sa-4.0',
           'license:odbl',
           'license:pddl',
           'license:ms-pl',
           'license:zlib',
           ]
    datasets = flatten_list([[x for x in list_datasets(filter=y) if 'translation' not in str(x.tags)] for y in lic])
    print(len(datasets))


# These useful datasets are determined based upon data sample, column types, and uniqueness compared to larger datasets like Pile
# grep columns getdata13.log|grep -v "\['image'\]"|sort|uniq|grep -v tokens|grep -v "'image'"|grep -v embedding|grep dialog
useful = ['Dahoas/instruct-human-assistant-prompt',
          'Dahoas/first-instruct-human-assistant-prompt',
          'knkarthick/dialogsum',  # summary of conversation
          'McGill-NLP/FaithDial',  # medium quality
          'Zaid/quac_expanded',  # medium quality context + QA
          '0-hero/OIG-small-chip2',  # medium
          'alistvt/coqa-flat',  # QA medium
          'AnonymousSub/MedQuAD_47441_Question_Answer_Pairs',  # QA medium
          'Anthropic/hh-rlhf',  # high quality  # similar to Dahoas/full-hh-rlhf
          'arjunth2001/online_privacy_qna',  # good quality QA
          'Dahoas/instruct_helpful_preferences',  # medium quality instruct
          'Dahoas/rl-prompt-dataset',  # medium chat
          'Dahoas/rm-static',  # medium chat
          'Dahoas/static-hh',  # medium chat  # HuggingFaceH4/self_instruct
          'Dahoas/synthetic-instruct-gptj-pairwise',  # medium chat
          'eli5',  # QA if prompt ELI5
          'gsm8k',  # QA (various)
          'guanaco/guanaco',  # prompt/response
          'kastan/rlhf-qa-comparisons',  # good QA
          'kastan/rlhf-qa-conditional-generation-v2',  # prompt answer
          'OllieStanley/humaneval-mbpp-codegen-qa',  # code QA, but started from words, so better than other code QA
          'OllieStanley/humaneval-mbpp-testgen-qa',  # code QA
          'Graverman/Instruct-to-Code',  # code QA
          'openai/summarize_from_feedback',  # summarize
          'relbert/analogy_questions',  # analogy QA
          'yitingxie/rlhf-reward-datasets',  # prompt, chosen, rejected.
          'yizhongw/self_instruct',  # instruct (super natural & instruct)
          'HuggingFaceH4/asss',  # QA, big A
          'kastan/rlhf-qa-conditional-generation-v2',  # QA
          'cosmos_qa',  # context QA
          'vishal-burman/c4-faqs',  # QA but not so much reasoning, but alot of text
          'squadshifts',  # QA from context
          'hotpot_qa',  # QA from context
          'adversarial_qa',  # QA from context
          'allenai/soda',  # dialog -> narrative/summary
          'squad_v2',  # context QA
          'squadshifts',  # context QA
          'dferndz/cSQuAD1',  # context QA
          'dferndz/cSQuAD2',  # context QA
          'din0s/msmarco-nlgen',  # context QA
          'domenicrosati/TruthfulQA',  # common sense truthful QA -- trivia but good trivia
          'hotpot_qa',  # context, QA
          'HuggingFaceH4/self-instruct-eval',  # instruct QA, medium quality, some language reasoning
          'kastan/EE_QA_for_RLHF',  # context QA
          'KK04/LogicInference_OA',  # instruction logical QA
          'lmqg/qa_squadshifts_synthetic',  # context QA
          'lmqg/qg_squad',  # context QA
          'lmqg/qg_squadshifts',  # context QA
          'lmqg/qg_subjqa',  # context QA
          'pszemraj/HC3-textgen-qa',
          # QA medium, has human responses -- humans tend to provide links instead of trying to answer
          'pythonist/newdata',  # long context, QA, brief A
          'ropes',  # long background, situation, question, A
          'wikitablequestions',  # table -> QA
          'bigscience/p3',  # context QA but short answers
          ]

code_useful = ['0n1xus/codexglue',
               'openai_humaneval',
               'koutch/staqc',
               ]

maybe_useful = ['AlekseyKorshuk/comedy-scripts',
                'openbookqa',  # hard to parse, low reasoning
                'qed',  # reasonable QA, but low reasoning
                'selqa',  # candidate answers
                'HuggingFaceH4/instruction-pilot-outputs-filtered',
                'GBaker/MedQA-USMLE-4-options',  # medical QA with long questions
                'npc-engine/light-batch-summarize-dialogue',  # dialog summarize, kinda low specific quality
                ]

summary_useful = ['austin/rheum_abstracts',
                  'CarperAI/openai_summarize_comparisons',  # summarize chosen/rejected
                  'CarperAI/openai_summarize_tldr',  # summarize QA
                  'ccdv/cnn_dailymail',  # summarize news
                  'ccdv/govreport-summarization',  # summarize high quality
                  'ccdv/pubmed-summarization',  # summarize high quality
                  'duorc',  # plot -> QA
                  'farleyknight/big_patent_5_percent',  # desc -> abstract
                  'multi_news',  # summary
                  'opinosis',
                  'SophieTr/reddit_clean',
                  'allenai/mup',  # long text -> summary
                  'allenai/multi_lexsum',  # long text -> summary
                  'big_patent',
                  'allenai/wcep_dense_max',
                  'awinml/costco_long_practice',
                  'GEM/xsum',
                  'ratishsp/newshead',
                  'RussianNLP/wikiomnia',  # russian
                  'stacked-summaries/stacked-xsum-1024',
                  ]

math_useful = [
    'competition_math'
]

skipped = ['c4',  # maybe useful, used for flan, but skipped due to size
           ]

"""
To get training data from oig:
pytest test_oig test_grade_final test_finalize_to_json
"""

human = '<human>:'
bot = '<bot>:'


def test_assemble_and_detox():
    import re
    from profanity_check import predict_prob
    df_list = []
    for data in useful_oig_files:
        print("Processing %s" % data, flush=True)
        df = pd.read_parquet(data)
        df = df.reset_index(drop=True)
        # chop up into human/bot interactions of no more than 10kB per row
        text_list = df[['text']].values.ravel().tolist()
        new_text = []
        max_len = 2048  # uber cutoff
        MAX_LEN = 2048 // 2 - 30  # max len per question/answer
        for text in tqdm(text_list):
            human_starts = [m.start() for m in re.finditer('<human>: ', text)]
            if len(human_starts) == 1:
                human_starts = [0, len(text)]  # always go into for loop below
            blurb = ''
            for i in range(len(human_starts) - 1):
                interaction = text[human_starts[i]: human_starts[i + 1]][:max_len]
                blurb += interaction
                if len(blurb) >= MAX_LEN:
                    blurb = get_sentences(blurb, length=MAX_LEN)[0]
                    new_text.append(blurb + "\n<human>:")
                    blurb = ''
            if blurb:
                blurb = get_sentences(blurb, length=MAX_LEN)[0]
                new_text.append(blurb + "\n<human>:")

        if len(new_text) > len(text_list):
            print("Added %d new rows (before: %d)" % (len(new_text) - df.shape[0], df.shape[0]))
        df = pd.DataFrame({"text": new_text, "source": [data] * len(new_text)})
        df = df.drop_duplicates(keep='first')
        print(df['text'].apply(lambda x: len(x)).describe())
        assert df['text'].apply(lambda x: len(x)).max() <= 2 * max_len

        # faster than better_profanity, do early
        df['profanity'] = predict_prob(df['text'])
        before_rows = df.shape[0]
        df = df[df['profanity'] < 0.25]  # drop any low quality stuff
        after_rows = df.shape[0]
        print("Dropped %d rows out of %d due to alt-profanity-check" % (before_rows - after_rows, before_rows))
        df_list.append(df)
        print("Done processing %s -> %s rows" % (data, df.shape[0]), flush=True)
        print("So far have %d rows" % sum([len(x) for x in df_list]))
    df_final = pd.concat(df_list)
    df_final = df_final.sample(frac=1, random_state=1234).reset_index(drop=True)
    df_final.to_parquet('h2oGPT.cleaned.human_bot.shorter.parquet', index=False)


def test_basic_cleaning():
    # from better_profanity import profanity
    # https://pypi.org/project/alt-profanity-check/
    from profanity_check import predict
    df_list = []
    for data in useful_oig_files:
        # for data in useful_oig_files[:5]:
        # for data in ['unified_openai_summarize_tldr.jsonl.parquet']:
        print("Processing %s" % data, flush=True)
        df = pd.read_parquet(data)
        df = df.reset_index(drop=True)
        # NOTE: Not correct if multiple human-bot interactions, but those dialogs even more desired
        # avg_chars = len(df['text'][0])/(df['text'][0].count(human)+df['text'][0].count(bot))
        df['avg_words'] = df['text'].apply(lambda x: x.count(' ') / (x.count(human) + x.count(bot)) / 2.0)
        df['avg_bot_words'] = df['text'].apply(lambda x: x.split(bot)[1].count(' ') / x.count(bot))
        # df['bad_words'] = df['text'].apply(lambda x: profanity.contains_profanity(x))
        # low_quality_patterns = ['Write the rest of this wikipedia article']
        res = predict(df['text'])
        df['bad_words'] = res
        df = df.reset_index(drop=True)
        df = df[df['bad_words'] == 0]
        df = df[['text', 'avg_words', 'avg_bot_words']]
        df = df.drop_duplicates(keep='first')
        print(df[df['avg_words'] == df['avg_words'].max()]['text'].values)
        median_words = np.median(df['avg_words'])
        min_words_per_entity = max(30, 0.8 * median_words)
        max_words_per_entity = 2048  # too hard to learn from for now
        df = df[df['avg_words'] > min_words_per_entity]
        df = df[df['avg_words'] < max_words_per_entity]

        min_words_per_entity = max(20, 0.5 * median_words)  # bot should say stuff for now
        max_words_per_entity = 2048  # too hard to learn from for now
        df = df[df['avg_bot_words'] > min_words_per_entity]
        df = df[df['avg_bot_words'] < max_words_per_entity]

        df_list.append(df)
        print("Done processing %s -> %s rows" % (data, df.shape[0]), flush=True)
    df_final = pd.concat(df_list)
    df_final.to_parquet('h2oGPT.cleaned.human_bot.parquet', index=False)


from joblib import Parallel, delayed, effective_n_jobs
from sklearn.utils import gen_even_slices
from sklearn.utils.validation import _num_samples


def parallel_apply(df, func, n_jobs=-1, **kwargs):
    """ Pandas apply in parallel using joblib.
    Uses sklearn.utils to partition input evenly.

    Args:
        df: Pandas DataFrame, Series, or any other object that supports slicing and apply.
        func: Callable to apply
        n_jobs: Desired number of workers. Default value -1 means use all available cores.
        **kwargs: Any additional parameters will be supplied to the apply function

    Returns:
        Same as for normal Pandas DataFrame.apply()

    """

    if effective_n_jobs(n_jobs) == 1:
        return df.apply(func, **kwargs)
    else:
        ret = Parallel(n_jobs=n_jobs)(
            delayed(type(df).apply)(df[s], func, **kwargs)
            for s in gen_even_slices(_num_samples(df), effective_n_jobs(n_jobs)))
        return pd.concat(ret)


def add_better_profanity_flag(df):
    from better_profanity import profanity
    df['better_profanity'] = parallel_apply(
        df['text'],
        lambda x: profanity.contains_profanity(x),
        n_jobs=-1,
    )
    return df


def add_textstat_grade(df):
    import textstat

    def myfunc(x):
        return textstat.flesch_kincaid_grade(x)  # simple grade

    if False:
        import dask.dataframe as dd
        # 40 seconds for 1000 rows, but have 1,787,799 rows
        ddata = dd.from_pandas(df, npartitions=120)

        df['flesch_grade'] = ddata['text'].apply(myfunc).compute()
    if True:
        # fast way
        df['flesch_grade'] = parallel_apply(df['text'], myfunc, n_jobs=-1)
    return df


def add_deberta_grade(df):
    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    import torch
    reward_name = "OpenAssistant/reward-model-deberta-v3-large-v2"
    rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(
        reward_name), AutoTokenizer.from_pretrained(reward_name)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    rank_model.to(device)

    def get_question(x):
        return x.replace('<human>: ', '').split('<bot>:')[0]

    def get_answer(x):
        try:
            answer = x.split('<bot>: ')[1].split('<human>:')[0].replace('<bot>: ', '')
        except:
            answer = x.split('<bot>:')[1].split('<human>:')[0].replace('<bot>:', '')
        return answer

    df['question'] = parallel_apply(df['text'], get_question, n_jobs=-1)
    df['answer'] = parallel_apply(df['text'], get_answer, n_jobs=-1)

    from datasets import Dataset
    from transformers import pipeline
    from transformers.pipelines.pt_utils import KeyPairDataset
    import tqdm

    pipe = pipeline(
        "text-classification",
        model=reward_name,
        device="cuda:0" if torch.cuda.is_available() else "cpu"
    )
    start = 0
    batch_size = 64 * 16
    micro_batch = orig_micro_batch = 16
    end = 0
    import socket
    checkpoint = "grades.%s.pkl" % socket.gethostname()
    grades = []
    import pickle
    if os.path.exists(checkpoint):
        with open(checkpoint, "rb") as f:
            start, grades = pickle.loads(f.read())
    last_oom = 0
    while end < df.shape[0]:
        # manual batching to handle OOM more gracefully
        end = min(start + batch_size, df.shape[0])
        if start == end:
            break
        dataset = Dataset.from_pandas(df.iloc[start:end, :])
        try:
            grades.extend([
                x['score'] for x in tqdm.tqdm(
                    pipe(KeyPairDataset(dataset, "question", "answer"), batch_size=micro_batch)
                )
            ])
        except torch.cuda.OutOfMemoryError:
            last_oom = start
            micro_batch = max(1, micro_batch // 2)
            print("OOM - retrying with micro_batch=%d" % micro_batch)
            continue
        if last_oom == start:
            micro_batch = orig_micro_batch
            print("Returning to micro_batch=%d" % micro_batch)
        assert len(grades) == end
        start = end
        with open(checkpoint, "wb") as f:
            f.write(pickle.dumps((end, grades)))
        print("%d/%d" % (end, df.shape[0]))
    df['grade_deberta'] = grades
    if os.path.exists(checkpoint):
        os.remove(checkpoint)
    return df


def test_chop_by_lengths():
    file = "h2oGPT.cleaned.human_bot.shorter.parquet"
    df = pd.read_parquet(file).reset_index(drop=True)
    df = count_human_bot_lengths(df)
    df['rand'] = np.random.rand(df.shape[0])
    df['rand2'] = np.random.rand(df.shape[0])
    before_rows = df.shape[0]
    # throw away short human/bot responses with higher likelihood
    df = df[(df['len_human_mean'] > 20)]  # never keep very short ones
    df = df[(df['len_human_mean'] > 30) | (df['rand'] < 0.2)]
    df = df[(df['len_human_mean'] > 50) | (df['rand'] < 0.5)]
    df = df[(df['len_human_max'] < 10000)]  # drop super long (basically only human) ones
    df = df[(df['len_bot_mean'] > 20)]  # never keep very short ones
    df = df[(df['len_bot_mean'] > 30) | (df['rand2'] < 0.2)]
    df = df[(df['len_bot_mean'] > 50) | (df['rand2'] < 0.5)]
    df = df[(df['len_bot_max'] < 10000)]  # drop super long (only bot) ones
    assert df['text'].apply(lambda x: len(x)).max() < 20000
    df = df.drop(['rand', 'rand2'], axis=1)
    after_rows = df.shape[0]
    print("Chopped off %d out of %d rows due to length" % (before_rows - after_rows, before_rows))
    print(df.describe())
    df.to_parquet('h2oGPT.cleaned.chopped.human_bot.shorter.parquet', index=False)


def count_human_bot_lengths(df, human=None, bot=None):
    import re
    len_human_min = []
    len_human_max = []
    len_human_mean = []
    len_bot_min = []
    len_bot_max = []
    len_bot_mean = []
    human = human or '<human>:'
    bot = bot or '<bot>:'
    for is_human in [True, False]:
        what = human if is_human else bot
        other = human if not is_human else bot
        for i in range(df.shape[0]):
            text = df.loc[i, 'text']
            assert isinstance(text, str)
            starts = [m.start() for m in re.finditer(what, text)]
            if len(starts) == 1:
                starts = [starts[0], len(text)]  # always go into for loop below
            assert len(text)
            list_what = []
            for ii in range(len(starts) - 1):
                interaction = text[starts[ii]: starts[ii + 1]]
                if other in interaction:
                    interaction = interaction[:interaction.find(other)]
                interaction.strip()
                list_what.append(interaction)
            if not list_what:
                list_what = ['']  # handle corrupted data, very rare, leads to sizes 0
            if is_human:
                len_human_min.append(min([len(x) for x in list_what]))
                len_human_max.append(max([len(x) for x in list_what]))
                len_human_mean.append(np.mean([len(x) for x in list_what]))
            else:
                len_bot_min.append(min([len(x) for x in list_what]))
                len_bot_max.append(max([len(x) for x in list_what]))
                len_bot_mean.append(np.mean([len(x) for x in list_what]))
    df['len_human_min'] = len_human_min
    df['len_human_max'] = len_human_max
    df['len_human_mean'] = len_human_mean
    df['len_bot_min'] = len_bot_min
    df['len_bot_max'] = len_bot_max
    df['len_bot_mean'] = len_bot_mean
    np.random.seed(1234)
    pd.set_option('display.max_columns', None)
    print("Before chopping")
    print(df.describe())
    return df


def test_grade():
    df = None

    file = "h2oGPT.cleaned.chopped.human_bot.shorter.parquet"
    output_file = "h2oGPT.cleaned.graded1.human_bot.shorter.parquet"
    if not os.path.exists(output_file):
        if df is None:
            df = pd.read_parquet(file).reset_index(drop=True)
        df = add_textstat_grade(df)
        min_grade = 10
        max_grade = 25
        df = df[df['flesch_grade'] >= min_grade]
        df = df[df['flesch_grade'] <= max_grade]
        print("After Flesch grade")
        print(df.describe())
        df.to_parquet(output_file, index=False)

    file = output_file
    output_file = "h2oGPT.cleaned.graded2.human_bot.shorter.parquet"
    if not os.path.exists(output_file):
        # slower than alt-profanity, do last, but do before deberta grading, since that's slower
        if df is None:
            df = pd.read_parquet(file).reset_index(drop=True)
        df = add_better_profanity_flag(df)
        before_rows = df.shape[0]
        df = df[df['better_profanity'] == 0]
        df = df.drop(['better_profanity'], axis=1)
        after_rows = df.shape[0]
        print("Dropped %d rows out of %d due to better_profanity" % (before_rows - after_rows, before_rows))
        print(df.describe())
        df.to_parquet(output_file, index=False)

    file = output_file
    output_file = 'h2oGPT.cleaned.graded3.human_bot.shorter.parquet'
    if not os.path.exists(output_file):
        if df is None:
            df = pd.read_parquet(file).reset_index(drop=True)
        df = add_deberta_grade(df)
        min_grade = 0.3
        max_grade = np.inf
        before_rows = df.shape[0]
        df = df[df['grade_deberta'] >= min_grade]
        df = df[df['grade_deberta'] <= max_grade]
        after_rows = df.shape[0]
        print("Dropped %d rows out of %d due to deberta grade" % (before_rows - after_rows, before_rows))
        print("After DeBERTa grade")
        print(df.describe())
        df.to_parquet(output_file, index=False)

    file = output_file
    output_file = 'h2oGPT.cleaned.graded.human_bot.shorter.parquet'
    if df is None:
        df = pd.read_parquet(file).reset_index(drop=True)
    df.to_parquet(output_file, index=False)


@pytest.mark.parametrize(
    "fixup_personality, only_personality, deberta_grading",
    [
        [False, False, False],
        [True, True, False],
        [True, False, False],
        [True, False, True],
    ]
)
def test_add_open_assistant(fixup_personality, only_personality, deberta_grading, save_json=True):
    """
    Flatten tree structure into one row per path from root to leaf
    Also turn into human_bot prompting format:
        <human>: question\n<bot>: answer <human>: question2\n<bot>: answer2 Etc.
    Also saves a .json locally as side-effect
    returns list of dicts, containing intput, prompt_type and source
    """
    from datasets import load_dataset
    data_file = "OpenAssistant/oasst1"
    ds = load_dataset(data_file)
    df = pd.concat([ds['train'].to_pandas(), ds['validation'].to_pandas()], axis=0)
    rows = {}
    message_ids = df['message_id'].values.tolist()
    message_tree_ids = df['message_tree_id'].values.tolist()
    parent_ids = df['parent_id'].values.tolist()
    texts = df['text'].values.tolist()
    roles = df['role'].values.tolist()

    for i in range(df.shape[0]):
        # collect all trees
        message_id = message_ids[i]
        message_tree_id = message_tree_ids[i]
        parent_id = parent_ids[i]
        text = texts[i]
        if fixup_personality:
            text = text.replace("Open Assistant", "h2oGPT")
            text = text.replace("Open-Assistant", "h2oGPT")
            text = text.replace("open-assistant", "h2oGPT")
            text = text.replace("OpenAssistant", "h2oGPT")
            text = text.replace("open assistant", "h2oGPT")
            text = text.replace("Open Assistand", "h2oGPT")
            text = text.replace("Open Assitant", "h2oGPT")
            text = text.replace("Open Assistent", "h2oGPT")
            text = text.replace("Open Assisstant", "h2oGPT")
            text = text.replace("Open Assitent", "h2oGPT")
            text = text.replace("Open Assitiant", "h2oGPT")
            text = text.replace("Open Assistiant", "h2oGPT")
            text = text.replace("Open Assitan ", "h2oGPT ")
            text = text.replace("Open Assistan ", "h2oGPT ")
            text = text.replace("Open Asistant", "h2oGPT")
            text = text.replace("Open Assiant", "h2oGPT")
            text = text.replace("Assistant", "h2oGPT")
            text = text.replace("LAION AI", "H2O.ai")
            text = text.replace("LAION-AI", "H2O.ai")
            text = text.replace("LAION,", "H2O.ai,")
            text = text.replace("LAION.ai", "H2O.ai")
            text = text.replace("LAION.", "H2O.ai.")
            text = text.replace("LAION", "H2O.ai")

        role = roles[i]
        new_data = ('<human>: ' if role == 'prompter' else '<bot>: ') + text
        entry = dict(message_id=message_id, parent_id=parent_id, text=new_data)
        if message_tree_id not in rows:
            rows[message_tree_id] = [entry]
        else:
            rows[message_tree_id].append(entry)

    all_rows = []

    for node_id in rows:
        # order responses in tree, based on message/parent relationship
        conversations = []

        list_msgs = rows[node_id]
        # find start
        while len(list_msgs):
            for i, leaf in enumerate(list_msgs):
                found = False
                parent_id = leaf['parent_id']
                if parent_id is None:
                    # conversation starter
                    conversations.append(leaf)
                    found = True
                else:
                    for conv in conversations:
                        # find all conversations to add my message to
                        if parent_id in conv['message_id'] and parent_id != conv['message_id'][-len(parent_id):]:
                            # my message doesn't follow conversation
                            continue
                        if parent_id == conv['message_id'][-len(parent_id):]:
                            # my message follows conversation, but fork first, so another follow-on message can do same
                            conversations.append(conv.copy())
                            conv['text'] += f"""
{leaf['text']}
"""
                            conv['message_id'] += leaf['message_id']
                            found = True
                            break
                if found:
                    # my content was used, so nuke from list
                    del list_msgs[i]
                    break

        # now reduce down to final conversations, find the longest chains of message ids
        for i, conv in enumerate(conversations):
            for j, conv2 in enumerate(conversations):
                if i == j:
                    continue
                if conv['message_id'] and conv2['message_id']:
                    assert conv['message_id'] != conv2['message_id']
                    # delete the shorter conversation, if one contains the other
                    if conv['message_id'] in conv2['message_id']:
                        conv['message_id'] = None
                    if conv2['message_id'] in conv['message_id']:
                        conv2['message_id'] = None
        conversations = [c for c in conversations if c['message_id']]
        if only_personality:
            all_rows.extend(
                [dict(input=c['text'] + "\n<human>:", prompt_type='plain', source=data_file) for c in conversations if
                 'h2oGPT' in c['text']])
        else:
            all_rows.extend(
                [dict(input=c['text'] + "\n<human>:", prompt_type='plain', source=data_file) for c in conversations if
                 "What is H2O.ai" not in c['text']])
    unhelpful = get_unhelpful_list()
    all_rows = [x for x in all_rows if not any(u in x['input'] for u in unhelpful)]
    personality = create_personality_data()
    all_rows.extend(personality * 10)
    np.random.seed(123)
    np.random.shuffle(all_rows)
    print(len(all_rows))
    if deberta_grading:
        df = pd.DataFrame(all_rows)
        df = df.rename(columns={'input': 'text'})
        df = add_deberta_grade(df)
        df = df.rename(columns={'text': 'input'})
        drop = True
        if drop:
            min_grade = 0.3
            max_grade = np.inf
            before_rows = df.shape[0]
            df = df[df['grade_deberta'] >= min_grade]
            df = df[df['grade_deberta'] <= max_grade]
            after_rows = df.shape[0]
            print("Dropped %d rows out of %d due to deberta grade" % (before_rows - after_rows, before_rows))
            print("After DeBERTa grade")
        print(df.describe())
        all_rows = []
        for i in range(df.shape[0]):
            all_rows.append(
                dict(
                    input=df['input'].iloc[i],
                    source=df['source'].iloc[i],
                    prompt_type=df['prompt_type'].iloc[i],
                    grade_deberta=df['grade_deberta'].iloc[i],
                )
            )
    if save_json:
        data_file = data_file + \
                    ("_h2ogpt" if fixup_personality else "") + \
                    ("_only" if only_personality else "") + \
                    ("_graded" if deberta_grading else "")
        for i in range(len(all_rows)):
            all_rows[i]['id'] = i
        with open(data_file.lower().replace("/", "_") + ".json", "w") as f:
            f.write(json.dumps(all_rows, indent=2))
    return all_rows


def test_finalize_to_json():
    df = pd.read_parquet('h2oGPT.cleaned.graded.human_bot.shorter.parquet')
    df = df.rename(columns={'text': 'input'})

    print("Number of high-quality human_bot interactions: %s" % df.shape[0], flush=True)

    print("Adding open assistant data")
    with open("openassistant_oasst1_h2ogpt_graded.json") as f:
        open_assistant = json.loads(f.read())
    df = pd.concat([df, pd.DataFrame(open_assistant)], axis=0)

    def final_clean(df):
        from better_profanity import profanity
        profanity.load_censor_words_from_file("data/censor_words.txt")
        df['profanity'] = parallel_apply(
            df['input'],
            lambda x: profanity.contains_profanity(x),
            n_jobs=-1,
        )
        return df[(df['profanity'] == 0)].reset_index(drop=True)

    print("Before cleaning: Number of final high-quality human_bot interactions: %s" % df.shape[0], flush=True)
    df = final_clean(df)
    print("After cleaning: Number of final high-quality human_bot interactions: %s" % df.shape[0], flush=True)
    print(df.describe())
    print(df.shape)
    row_list = []
    for i in range(df.shape[0]):
        row_list.append(
            dict(
                input=df.loc[i, 'input'],
                source=df.loc[i, 'source'],
                prompt_type='plain',
            )
        )
    np.random.seed(1234)
    np.random.shuffle(row_list)
    unhelpful = get_unhelpful_list()
    row_list = [x for x in row_list if not any(u in x['input'] for u in unhelpful)]
    for i in range(len(row_list)):
        row_list[i]['id'] = i
        row_list[i]['input'] = row_list[i]['input'].replace(" <bot>:", "\n<bot>:")
    with open('h2ogpt-oig-oasst1-instruct-cleaned-v3.json', "w") as f:
        f.write(json.dumps(row_list, indent=2))


def create_personality_data():
    questions = [
        "What's your name?",
        "What is your name?",
        "What are you?",
        "Who are you?",
        "Do you have a name?",
        "Who trained you?",
        "Who created you?",
        "Who made you?",
    ]
    answers = [
        "I'm h2oGPT, a large language model by H2O.ai.",
        "I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.",
        "My name is h2oGPT. I'm a large language model by H2O.ai, the visionary leader in democratizing AI.",
        "My name is h2oGPT. I'm a large language model trained by H2O.ai.",
        "Hi! I'm h2oGPT, a large language model by H2O.ai.",
        "Hi! I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.",
    ]
    help = [
        "",
        " How can I help you?",
        " How may I assist you?",
        " Nice to meet you.",
    ]
    import itertools
    rows = []
    for pair in itertools.product(questions, answers, help):
        rows.append(
            dict(input=f"<human>: {pair[0]}\n<bot>: {pair[1]}{pair[2]}\n<human>:", prompt_type='plain', source="H2O.ai")
        )
    for row in [
        "<human>: What is H2O.ai?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: What is h2o.ai?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: What is H2O?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: Who is h2o.ai?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: who is h2o.ai?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: who is h2o?\n<bot>: H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models.\n<human>:",
        "<human>: What is H2O.ai?\n<bot>: H2O.ai is the visionary leader in democratizing AI.\n<human>:",
        "<human>: Who is H2O.ai?\n<bot>: H2O.ai is the visionary leader in democratizing AI.\n<human>:",
        "<human>: Who is H2O?\n<bot>: H2O.ai is the visionary leader in democratizing AI.\n<human>:",
        "<human>: Who is h2o?\n<bot>: H2O.ai is the visionary leader in democratizing AI.\n<human>:",
        "<human>: who is h2o?\n<bot>: H2O.ai is the visionary leader in democratizing AI.\n<human>:",
    ]:
        rows.append(dict(input=row, prompt_type='plain', source='H2O.ai'))
    print(len(rows))
    with open("h2ogpt-personality.json", "w") as f:
        f.write(json.dumps(rows, indent=2))
    return rows


def test_check_stats_data():
    filename = 'h2ogpt-oig-oasst1-instruct-cleaned-v3.json'
    df = pd.read_json(filename)

    # get word stats
    df['char_count'] = df['input'].apply(lambda x: len(x))
    import matplotlib.pyplot as plt
    plt.figure(figsize=(10, 10))
    plt.hist(df['char_count'], bins=100)
    chars_avg = np.mean(df['char_count'])
    chars_median = np.median(df['char_count'])
    plt.title("char_count avg: %s median: %s" % (chars_avg, chars_median))
    plt.savefig('chars_hist.png')
    plt.close()

    # get tokenize stats for random sample of 1000 rows
    from finetune import generate_and_tokenize_prompt
    from loaders import get_loaders, get_tokenizer
    from functools import partial

    llama_type = False
    tokenizer_base_model = base_model = 'h2oai/h2ogpt-oasst1-512-20b'
    model_loader, tokenizer_loader = get_loaders(model_name=base_model, reward_type=False, llama_type=llama_type)
    local_files_only = False
    resume_download = True
    use_auth_token = False
    tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token)
    prompt_type = 'plain'  # trained with data already in human bot form
    train_on_inputs = True
    add_eos_token = False
    cutoff_len = 512  # can choose 2048
    generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type,
                                               train_on_inputs=train_on_inputs, add_eos_token=add_eos_token,
                                               cutoff_len=cutoff_len, tokenizer=tokenizer)
    from datasets import load_dataset
    data = load_dataset("json", data_files={"train": filename})
    val_set_size = 0.90
    train_val = data["train"].train_test_split(
        test_size=val_set_size, shuffle=True, seed=42
    )
    train_data = train_val["train"]
    train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count())

    df_tokens = pd.DataFrame([len(x) for x in train_data['input_ids']], columns=['token_count'])

    plt.figure(figsize=(10, 10))
    plt.hist(df_tokens['token_count'], bins=100)
    token_avg = np.mean(df_tokens['token_count'])
    token_median = np.median(df_tokens['token_count'])
    plt.title("token_count with cutoff=%s avg: %s median: %s" % (cutoff_len, token_avg, token_median))
    plt.savefig('token_hist_%s.png' % cutoff_len)
    plt.close()


def get_unhelpful_list():
    # base versions
    unhelpful = ["I'm sorry, I didn't quite understand your question, could you please rephrase it?",
                 "I'm sorry, but I don't understand your question. Could you please rephrase it?",
                 "I'm sorry, I don't quite understand your question",
                 "I'm sorry, I don't know",
                 "I'm sorry, but I don't know",
                 "I don't know anything",
                 "I do not know",
                 "I don't know",
                 "I don't know how",
                 "I do not know how",
                 "Can you please explain what you mean",
                 "please explain what you mean",
                 "please explain",
                 "I'm sorry, but I don't know how to tell a story. Can you please explain what you mean by",
                 "I'm sorry but I don't understand what you mean",
                 "I don't understand",
                 "I don't have the ability",
                 "I do not have the ability",
                 "I do not have",
                 "I am a language model,",
                 "I am a large language model,",
                 "I do not understand your question. Can you please try to make it clearer?",
                 "I'm sorry, but as an AI language model",
                 "I apologize, but I cannot rephrase text that I cannot understand. Your post is difficult to read and follow.",
                 "I apologize, but I am not h2oGPT. I am a language model developed by H2O.ai. How may I help you?",
                 "Sorry, but I am not an actual Linux shell, nor am I capable of emulating one. I am an open source chat assistant and would be glad t",
                 "I apologize, but I cannot perform the task you have requested.",
                 "I'm sorry, I cannot perform this task as I am an AI language model and do not have access",
                 "I'm sorry, I'm not sure what you're asking for here.",
                 "I'm not sure what you are asking",
                 "You need to provide more context",
                 ]
    # reduced versions, with redundant parts, just to give context for where they came from
    unhelpful += ["sorry, I didn't quite understand your question",
                  "I didn't quite understand your question",
                  "I didn't understand your question",
                  "I did not understand your question",
                  "I did not understand the question",
                  "could you please rephrase"
                  "could you rephrase"
                  "I do not understand your question.",
                  "I do not understand the question.",
                  "I do not understand that question.",
                  "Can you please try to make it clearer",
                  "Can you try to make it clearer",
                  "sorry, but as an AI language model",
                  "as an AI language model",
                  "I apologize, but I cannot",
                  "I cannot rephrase text",
                  "I cannot understand. Your post is difficult to read and follow."
                  "Your post is difficult to read and follow."
                  "I apologize, but I am",
                  "Sorry, but I am not ",
                  "nor am I capable",
                  "I am not capable of",
                  "I apologize, but I cannot perform the task you have requested",
                  "I cannot perform the task",
                  "I cannot complete the task",
                  "I'm sorry",
                  "I am sorry",
                  "do not have access",
                  "not sure what you're asking for",
                  "not sure what you are asking for",
                  "not sure what is being asked",
                  "I'm not sure what you are asking",
                  "not sure what you are asking",
                  "You need to provide more context",
                  "provide more context",
                  ]
    unhelpful += ["As a large language model",
                  "cannot provide any information",
                  "As an artificial intelligence I do not have the capability",
                  "As an artificial intelligence I don't have the capability",
                  "As an artificial intelligence I can't",
                  "As an artificial intelligence I cannot",
                  "I am sorry but I do not understand",
                  "Can you please explain",
                  "(sorry couldn't resist)",
                  "(sorry could not resist)",
                  " :)",
                  " ;)",
                  " :-)",
                  " ;-)",
                  " lol ",
                  "Thanks so much!!!",
                  "Thank You :)!!!",
                  "Please try not to repeat",
                  "I am an AI language model",
                  "I'm a AI assistant that",
                  "I'm an AI assistant that",
                  "I am an AI assistant that",
                  "etc.",
                  "etc.etc.",
                  "etc. etc.",
                  "etc etc",
                  ]
    return unhelpful


def test_check_unhelpful():
    # file = '/home/jon/Downloads/openassistant_oasst1_h2ogpt_graded.json'
    file = '/home/jon/Downloads/openassistant_oasst1_h2ogpt_grades.json'
    # file = 'h2ogpt-oig-oasst1-instruct-cleaned-v2.json'

    unhelpful = get_unhelpful_list()
    # data = json.load(open(file, 'rt'))
    df = pd.read_json(file)

    use_reward_score_threshold = False
    use_bleu_threshold = False
    use_sentence_sim = True

    from sacrebleu.metrics import BLEU
    bleu = BLEU()
    from nltk.translate.bleu_score import sentence_bleu

    def get_bleu(actual, expected_list):
        # return bleu.sentence_score(actual, expected_list).score
        return sentence_bleu(expected_list, actual)

    threshold = 0.0
    if use_reward_score_threshold:
        df = df[df['grade_deberta'] > threshold]

    # back to as if original json load
    data = df.to_dict(orient='records')
    bads = {}
    string_all = str(data)
    for sub in unhelpful:
        bads[sub] = string_all.count(sub)
    bads = {k: v for k, v in bads.items() if v > 0}
    import pprint
    pp = pprint.PrettyPrinter(indent=4)
    pp.pprint(bads)

    total_bads = sum(list(bads.values()))
    print('total_bads: %s' % total_bads, flush=True)

    # check just bot
    import re
    convs = [[x.strip() for x in re.split(r'%s|%s' % (human, bot), y['input']) if x.strip()] for y in data]
    humans = [[x for i, x in enumerate(y) if i % 2 == 0] for y in convs]
    bots = [[x for i, x in enumerate(y) if i % 2 == 1] for y in convs]

    # FIXME: apply back to json etc., just see for now
    bleu_threshold = 0.9
    if use_bleu_threshold:
        bots = [[x for x in y if get_bleu(x, unhelpful) < bleu_threshold] for y in tqdm(bots)]

    cosine_sim_threshold = 0.8
    if use_sentence_sim:
        # pip install sentence_transformers-2.2.2
        from sentence_transformers import SentenceTransformer
        # sent_model = 'bert-base-nli-mean-tokens'
        # sent_model = 'nli-distilroberta-base-v2'
        sent_model = 'all-MiniLM-L6-v2'
        model = SentenceTransformer(sent_model)
        sentence_embeddings = model.encode(unhelpful)
        from sklearn.metrics.pairwise import cosine_similarity
        bots = [x for x in tqdm(bots) if
                np.max(cosine_similarity(model.encode(x), sentence_embeddings)) < cosine_sim_threshold]

    bads_bots = {}
    string_all = str(bots)
    for sub in unhelpful:
        bads_bots[sub] = string_all.count(sub)
    bads_bots = {k: v for k, v in bads_bots.items() if v > 0}
    import pprint
    pp = pprint.PrettyPrinter(indent=4)
    pp.pprint(bads_bots)

    total_bads_bots = sum(list(bads_bots.values()))
    print('threshold: %g use_bleu_threshold: %g total_bads_bots: %s total_bots: %s total_humans: %s' % (
    threshold, use_bleu_threshold, total_bads_bots, len(bots), len(humans)), flush=True)

    # assert len(bads) == 0, bads
    assert len(bads_bots) == 0, bads_bots


def test_fortune2000_personalized():
    row_list = []
    import glob
    if not os.path.isdir("wikitext"):
        raise RuntimeError("download https://github.com/h2oai/h2ogpt/files/11423008/wikitext.zip and unzip")
    for file in glob.glob("wikitext/*.txt"):
        with open(file, "r") as f:
            blob = f.read()
        N = 512 * 4
        row_list.extend([{'input': s, 'prompt_type': 'plain', 'source': "%s" % os.path.basename(file)}
                         for s in get_sentences(blob, N) if s])
    personality = create_personality_data()
    import copy
    for i in range(10):
        row_list.extend(copy.deepcopy(personality))
    np.random.seed(123)
    np.random.shuffle(row_list)
    for i in range(len(row_list)):
        row_list[i]['id'] = i
    for i in range(len(row_list)):
        assert row_list[i]['id'] == i
    with open("h2ogpt-fortune2000-personalized.json", "w") as ff:
        ff.write(json.dumps(row_list, indent=2))