File size: 1,834 Bytes
93c029f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch; torch.manual_seed(0)
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.distributions
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200

device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_activation(activation):
    if activation == 'tanh':
        activ = F.tanh
    elif activation == 'relu':
        activ = F.relu
    elif activation == 'mish':
        activ = F.mish
    elif activation == 'sigmoid':
        activ = torch.sigmoid
    elif activation == 'leakyrelu':
        activ = F.leaky_relu
    elif activation == 'exp':
        activ = torch.exp
    else:
        raise ValueError
    return activ


class SimpleNet(nn.Module):
    def __init__(self, input_dim, hidden_dims, output_dim, activation, dropout, final_activ=None):
        super(SimpleNet, self).__init__()
        self.linears = nn.ModuleList()
        self.dropouts = nn.ModuleList()
        self.output_dim = output_dim
        dims = [input_dim] + hidden_dims + [output_dim]
        for d_in, d_out in zip(dims[:-1], dims[1:]):
            self.linears.append(nn.Linear(d_in, d_out))
            self.dropouts.append(nn.Dropout(dropout))
        self.activation = get_activation(activation)
        self.n_layers = len(self.linears)
        self.layer_range = range(self.n_layers)
        if final_activ != None:
            self.final_activ = get_activation(final_activ)
            self.use_final_activ = True
        else:
            self.use_final_activ = False

    def forward(self, x):
        for i_layer, layer, dropout in zip(self.layer_range, self.linears, self.dropouts):
            x = layer(x)
            if i_layer != self.n_layers - 1:
                x = self.activation(dropout(x))
        if self.use_final_activ: x = self.final_activ(x)
        return x