File size: 13,022 Bytes
93c029f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import torch; torch.manual_seed(0)
import torch.utils
from torch.utils.data import DataLoader
import torch.distributions
import torch.nn as nn
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200
from src.cocktails.representation_learning.dataset import MyDataset, get_representation_from_ingredient, get_max_n_ingredients
import json
import pandas as pd
import numpy as np
import os
from src.cocktails.representation_learning.simple_model import SimpleNet
from src.cocktails.config import COCKTAILS_CSV_DATA, FULL_COCKTAIL_REP_PATH, EXPERIMENT_PATH
from src.cocktails.utilities.cocktail_utilities import get_bunch_of_rep_keys
from src.cocktails.utilities.ingredients_utilities import ingredient_profiles
from resource import getrusage
from resource import RUSAGE_SELF
import gc
gc.collect(2)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_params():
    data = pd.read_csv(COCKTAILS_CSV_DATA)
    max_ingredients, ingredient_set, liquor_set, liqueur_set = get_max_n_ingredients(data)
    num_ingredients = len(ingredient_set)
    rep_keys = get_bunch_of_rep_keys()['custom']
    ing_keys = [k.split(' ')[1] for k in rep_keys]
    ing_keys.remove('volume')
    nb_ing_categories = len(set(ingredient_profiles['type']))
    category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))

    params = dict(trial_id='test',
                  save_path=EXPERIMENT_PATH + "/simple_net/",
                  nb_epochs=100,
                  print_every=50,
                  plot_every=50,
                  batch_size=128,
                  lr=0.001,
                  dropout=0.15,
                  output_keyword='glasses',
                  ing_keys=ing_keys,
                  nb_ingredients=len(ingredient_set),
                  hidden_dims=[16],
                  activation='sigmoid',
                  auxiliaries_dict=dict(categories=dict(weight=0, type='classif', final_activ=None, dim_output=len(set(data['subcategory']))),
                                        glasses=dict(weight=0, type='classif', final_activ=None, dim_output=len(set(data['glass']))),
                                        prep_type=dict(weight=0, type='classif', final_activ=None, dim_output=len(set(data['category']))),
                                        cocktail_reps=dict(weight=0, type='regression', final_activ=None, dim_output=13),
                                        volume=dict(weight=0, type='regression', final_activ='relu',  dim_output=1),
                                        taste_reps=dict(weight=0, type='regression', final_activ='relu', dim_output=2),
                                        ingredients_presence=dict(weight=0, type='multiclassif', final_activ=None, dim_output=num_ingredients),
                                        ingredients_quantities=dict(weight=0, type='regression', final_activ=None, dim_output=num_ingredients)),

                  category_encodings=category_encodings
                  )
    params['output_dim'] = params['auxiliaries_dict'][params['output_keyword']]['dim_output']
    water_rep, indexes_to_normalize = get_representation_from_ingredient(ingredients=['water'], quantities=[1],
                                                                         max_q_per_ing=dict(zip(ingredient_set, [1] * num_ingredients)), index=0,
                                                                         params=params)
    dim_rep_ingredient = water_rep.size
    params['indexes_ing_to_normalize'] = indexes_to_normalize
    params['deepset_latent_dim'] = dim_rep_ingredient * max_ingredients
    params['dim_rep_ingredient'] = dim_rep_ingredient
    params['input_dim'] = params['nb_ingredients']
    params = compute_expe_name_and_save_path(params)
    del params['category_encodings']  # to dump
    with open(params['save_path'] + 'params.json', 'w') as f:
        json.dump(params, f)

    params = complete_params(params)
    return params

def complete_params(params):
    data = pd.read_csv(COCKTAILS_CSV_DATA)
    cocktail_reps = np.loadtxt(FULL_COCKTAIL_REP_PATH)
    nb_ing_categories = len(set(ingredient_profiles['type']))
    category_encodings = dict(zip(sorted(set(ingredient_profiles['type'])), np.eye(nb_ing_categories)))
    params['cocktail_reps'] = cocktail_reps
    params['raw_data'] = data
    params['category_encodings'] = category_encodings
    return params

def compute_confusion_matrix_and_accuracy(predictions, ground_truth):
    bs, n_options = predictions.shape
    predicted = predictions.argmax(dim=1).detach().numpy()
    true = ground_truth.int().detach().numpy()
    confusion_matrix = np.zeros([n_options, n_options])
    for i in range(bs):
        confusion_matrix[true[i], predicted[i]] += 1
    acc = confusion_matrix.diagonal().sum() / bs
    for i in range(n_options):
        if confusion_matrix[i].sum() != 0:
            confusion_matrix[i] /= confusion_matrix[i].sum()
    acc2 = np.mean(predicted == true)
    assert (acc - acc2) < 1e-5
    return confusion_matrix, acc


def run_epoch(opt, train, model, data, loss_function, params):
    if train:
        model.train()
    else:
        model.eval()

    # prepare logging of losses
    losses = []
    accuracies = []
    cf_matrices = []
    if train: opt.zero_grad()

    for d in data:
        nb_ingredients = d[0]
        batch_size = nb_ingredients.shape[0]
        x_ingredients = d[1].float()
        ingredient_quantities = d[2].float()
        cocktail_reps = d[3].float()
        auxiliaries = d[4]
        for k in auxiliaries.keys():
            if auxiliaries[k].dtype == torch.float64: auxiliaries[k] = auxiliaries[k].float()
        taste_valid = d[-1]
        predictions = model(ingredient_quantities)
        loss = loss_function(predictions, auxiliaries[params['output_keyword']].long()).float()
        cf_matrix, accuracy = compute_confusion_matrix_and_accuracy(predictions, auxiliaries[params['output_keyword']])
        if train:
            loss.backward()
            opt.step()
            opt.zero_grad()

        losses.append(float(loss))
        cf_matrices.append(cf_matrix)
        accuracies.append(accuracy)

    return model, np.mean(losses), np.mean(accuracies), np.mean(cf_matrices, axis=0)

def prepare_data_and_loss(params):
    train_data = MyDataset(split='train', params=params)
    test_data = MyDataset(split='test', params=params)

    train_data_loader = DataLoader(train_data, batch_size=params['batch_size'], shuffle=True)
    test_data_loader = DataLoader(test_data, batch_size=params['batch_size'], shuffle=True)


    if params['auxiliaries_dict'][params['output_keyword']]['type'] == 'classif':
        if params['output_keyword'] == 'glasses':
            classif_weights = train_data.glasses_weights
        elif params['output_keyword'] == 'prep_type':
            classif_weights = train_data.prep_types_weights
        elif params['output_keyword'] == 'categories':
            classif_weights = train_data.categories_weights
        else:
            raise ValueError
        # classif_weights = (np.array(classif_weights) * 2 + np.ones(len(classif_weights))) / 3
        loss_function = nn.CrossEntropyLoss(torch.FloatTensor(classif_weights))
        # loss_function = nn.CrossEntropyLoss()

    elif params['auxiliaries_dict'][params['output_keyword']]['type'] == 'multiclassif':
        loss_function = nn.BCEWithLogitsLoss()
    elif params['auxiliaries_dict'][params['output_keyword']]['type'] == 'regression':
        loss_function = nn.MSELoss()
    else:
        raise ValueError

    return loss_function, train_data_loader, test_data_loader

def print_losses(train, loss, accuracy):
    keyword = 'Train' if train else 'Eval'
    print(f'\t{keyword} logs:')
    print(f'\t\t Loss: {loss:.2f}, Acc: {accuracy:.2f}')


def run_experiment(params, verbose=True):
    loss_function, train_data_loader, test_data_loader = prepare_data_and_loss(params)

    model = SimpleNet(params['input_dim'], params['hidden_dims'], params['output_dim'], params['activation'], params['dropout'])
    opt = torch.optim.AdamW(model.parameters(), lr=params['lr'])

    all_train_losses = []
    all_eval_losses = []
    all_eval_cf_matrices = []
    all_train_accuracies = []
    all_eval_accuracies = []
    all_train_cf_matrices = []
    best_loss = np.inf
    model, eval_loss, eval_accuracy, eval_cf_matrix = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_function=loss_function,  params=params)
    all_eval_losses.append(eval_loss)
    all_eval_accuracies.append(eval_accuracy)
    if verbose: print(f'\n--------\nEpoch #0')
    if verbose: print_losses(train=False, accuracy=eval_accuracy, loss=eval_loss)
    for epoch in range(params['nb_epochs']):
        if verbose and (epoch + 1) % params['print_every'] == 0: print(f'\n--------\nEpoch #{epoch+1}')
        model, train_loss, train_accuracy, train_cf_matrix = run_epoch(opt=opt, train=True, model=model, data=train_data_loader, loss_function=loss_function, params=params)
        if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=True, accuracy=train_accuracy, loss=train_loss)
        model, eval_loss, eval_accuracy, eval_cf_matrix = run_epoch(opt=opt, train=False, model=model, data=test_data_loader, loss_function=loss_function, params=params)
        if verbose and (epoch + 1) % params['print_every'] == 0: print_losses(train=False, accuracy=eval_accuracy, loss=eval_loss)
        if eval_loss < best_loss:
            best_loss = eval_loss
            if verbose: print(f'Saving new best model with loss {best_loss:.2f}')
            torch.save(model.state_dict(), params['save_path'] + f'checkpoint_best.save')

        # log
        all_train_losses.append(train_loss)
        all_train_accuracies.append(train_accuracy)
        all_eval_losses.append(eval_loss)
        all_eval_accuracies.append(eval_accuracy)
        all_eval_cf_matrices.append(eval_cf_matrix)
        all_train_cf_matrices.append(train_cf_matrix)

        if (epoch + 1) % params['plot_every'] == 0:

            plot_results(all_train_losses, all_train_accuracies, all_train_cf_matrices,
                         all_eval_losses, all_eval_accuracies, all_eval_cf_matrices, params['plot_path'])

    return model

def plot_results(all_train_losses, all_train_accuracies, all_train_cf_matrices,
                 all_eval_losses, all_eval_accuracies, all_eval_cf_matrices, plot_path):

    steps = np.arange(len(all_eval_accuracies))

    plt.figure()
    plt.title('Losses')
    plt.plot(steps[1:], all_train_losses, label='train')
    plt.plot(steps, all_eval_losses, label='eval')
    plt.legend()
    plt.ylim([0, 4])
    plt.savefig(plot_path + 'losses.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Accuracies')
    plt.plot(steps[1:], all_train_accuracies, label='train')
    plt.plot(steps, all_eval_accuracies, label='eval')
    plt.legend()
    plt.ylim([0, 1])
    plt.savefig(plot_path + 'accs.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)


    plt.figure()
    plt.title('Train confusion matrix')
    plt.ylabel('True')
    plt.xlabel('Predicted')
    plt.imshow(all_train_cf_matrices[-1], vmin=0, vmax=1)
    plt.colorbar()
    plt.savefig(plot_path + f'train_confusion_matrix.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.figure()
    plt.title('Eval confusion matrix')
    plt.ylabel('True')
    plt.xlabel('Predicted')
    plt.imshow(all_eval_cf_matrices[-1], vmin=0, vmax=1)
    plt.colorbar()
    plt.savefig(plot_path + f'eval_confusion_matrix.png', dpi=200)
    fig = plt.gcf()
    plt.close(fig)

    plt.close('all')


def get_model(model_path):
    with open(model_path + 'params.json', 'r') as f:
        params = json.load(f)
    params['save_path'] = model_path
    model_chkpt = model_path + "checkpoint_best.save"
    model = SimpleNet(params['input_dim'], params['hidden_dims'], params['output_dim'], params['activation'], params['dropout'])
    model.load_state_dict(torch.load(model_chkpt))
    model.eval()
    return model, params


def compute_expe_name_and_save_path(params):
    weights_str = '['
    for aux in params['auxiliaries_dict'].keys():
        weights_str += f'{params["auxiliaries_dict"][aux]["weight"]}, '
    weights_str = weights_str[:-2] + ']'
    save_path = params['save_path'] + params["trial_id"]
    save_path += f'_lr{params["lr"]}'
    save_path += f'_bs{params["batch_size"]}'
    save_path += f'_hd{params["hidden_dims"]}'
    save_path += f'_activ{params["activation"]}'
    save_path += f'_w{weights_str}'
    counter = 0
    while os.path.exists(save_path + f"_{counter}"):
        counter += 1
    save_path = save_path + f"_{counter}" + '/'
    params["save_path"] = save_path
    os.makedirs(save_path)
    os.makedirs(save_path + 'plots/')
    params['plot_path'] = save_path + 'plots/'
    print(f'logging to {save_path}')
    return params



if __name__ == '__main__':
    params = get_params()
    run_experiment(params)