File size: 4,615 Bytes
14e7761
 
 
 
 
 
 
 
 
 
d574298
 
 
 
 
 
 
 
 
 
 
14e7761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e103ce
 
 
 
 
 
 
 
 
 
 
 
14e7761
 
 
6e103ce
 
 
 
 
 
 
 
 
 
 
 
14e7761
 
 
6e103ce
 
 
 
 
 
 
 
 
 
 
 
14e7761
 
 
d574298
 
 
 
 
14e7761
d574298
 
14e7761
d574298
 
14e7761
6e103ce
d574298
 
 
 
 
 
 
 
 
6e103ce
14e7761
d574298
 
 
14e7761
 
 
 
d574298
14e7761
 
 
db5e575
14e7761
 
 
 
 
d574298
 
14e7761
 
d574298
 
 
14e7761
 
 
d574298
 
14e7761
 
 
d574298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e7761
 
d574298
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from model import EvalNet
from utils import (
    get_modelist,
    find_wav_files,
    embed_img,
    _L,
    EN_US,
    SAMPLE_RATE,
    TEMP_DIR,
    TRANSLATE,
    CLASSES,
)


def circular_padding(y: np.ndarray, sr: int, dur=3):
    if len(y) >= sr * dur:
        return y[: sr * dur]

    size = sr * dur // len(y) + int((sr * dur) % len(y) > 0)
    arrays = []
    for _ in range(size):
        arrays.append(y)

    y = np.hstack(arrays)
    return y[: sr * dur]


def wav2mel(audio_path: str):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = circular_padding(y, sr)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    librosa.display.specshow(log_mel_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def wav2cqt(audio_path: str):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = circular_padding(y, sr)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_cqt_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def wav2chroma(audio_path: str):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = circular_padding(y, sr)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_chroma_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not wav_path:
            return None, "请输入音频!"

        spec = log_name.split("_")[-3]
        os.makedirs(folder_path, exist_ok=True)
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("wav2%s" % spec)(wav_path)
        input = embed_img(f"{folder_path}/output.jpg")
        output: torch.Tensor = model(input)
        pred_id = torch.max(output.data, 1)[1]
        filename = os.path.basename(wav_path)
        result = (
            CLASSES[pred_id].capitalize()
            if EN_US
            else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})"
        )

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="swin_t_mel")
    examples = []
    example_wavs = find_wav_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传录音"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(label=_L("演奏技法识别"), show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title=_L("建议录音时长保持在 3s 左右"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @article{Zhou-2025,
                author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
                title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
                journal = {Transactions of the International Society for Music Information Retrieval},
                volume  = {8},
                number  = {1},
                pages   = {22--38},
                month   = {Mar},
                year    = {2025},
                url     = {https://doi.org/10.5334/tismir.194},
                doi     = {10.5334/tismir.194}
            }
            ```"""
        )

    demo.launch()