Spaces:
Running
Running
File size: 4,615 Bytes
14e7761 d574298 14e7761 6e103ce 14e7761 6e103ce 14e7761 6e103ce 14e7761 d574298 14e7761 d574298 14e7761 d574298 14e7761 6e103ce d574298 6e103ce 14e7761 d574298 14e7761 d574298 14e7761 db5e575 14e7761 d574298 14e7761 d574298 14e7761 d574298 14e7761 d574298 14e7761 d574298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from model import EvalNet
from utils import (
get_modelist,
find_wav_files,
embed_img,
_L,
EN_US,
SAMPLE_RATE,
TEMP_DIR,
TRANSLATE,
CLASSES,
)
def circular_padding(y: np.ndarray, sr: int, dur=3):
if len(y) >= sr * dur:
return y[: sr * dur]
size = sr * dur // len(y) + int((sr * dur) % len(y) > 0)
arrays = []
for _ in range(size):
arrays.append(y)
y = np.hstack(arrays)
return y[: sr * dur]
def wav2mel(audio_path: str):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(log_mel_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2cqt(audio_path: str):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
librosa.display.specshow(log_cqt_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2chroma(audio_path: str):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = circular_padding(y, sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
librosa.display.specshow(log_chroma_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
status = "Success"
filename = result = None
try:
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频!"
spec = log_name.split("_")[-3]
os.makedirs(folder_path, exist_ok=True)
model = EvalNet(log_name, len(TRANSLATE)).model
eval("wav2%s" % spec)(wav_path)
input = embed_img(f"{folder_path}/output.jpg")
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
filename = os.path.basename(wav_path)
result = (
CLASSES[pred_id].capitalize()
if EN_US
else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})"
)
except Exception as e:
status = f"{e}"
return status, filename, result
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="swin_t_mel")
examples = []
example_wavs = find_wav_files()
for wav in example_wavs:
examples.append([wav, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label=_L("上传录音"), type="filepath"),
gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
gr.Textbox(label=_L("演奏技法识别"), show_copy_button=True),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title=_L("建议录音时长保持在 3s 左右"),
)
gr.Markdown(
f"# {_L('引用')}"
+ """
```bibtex
@article{Zhou-2025,
author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
journal = {Transactions of the International Society for Music Information Retrieval},
volume = {8},
number = {1},
pages = {22--38},
month = {Mar},
year = {2025},
url = {https://doi.org/10.5334/tismir.194},
doi = {10.5334/tismir.194}
}
```"""
)
demo.launch()
|