File size: 2,310 Bytes
0d6426a
 
 
 
 
 
 
 
 
 
 
 
 
aa314ec
0d6426a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: UTF-8 -*-
import gradio as gr
import torch, torchaudio
from timeit import default_timer as timer
from torchaudio.transforms import Resample
from models.model import HarmonicCNN

device = "cuda" if torch.cuda.is_available() else "cpu"

SAMPLE_RATE = 16000
AUDIO_LEN = 2.90

model = HarmonicCNN()
S = torch.load('models/best_model.pth', map_location=torch.device('cpu'))
model.load_state_dict(S)

LABELS = [
    "alternative",
    "ambient",
    "atmospheric",
    "chillout",
    "classical",
    "dance",
    "downtempo",
    "easylistening",
    "electronic",
    "experimental",
    "folk",
    "funk",
    "hiphop",
    "house",
    "indie",
    "instrumentalpop",
    "jazz",
    "lounge",
    "metal",
    "newage",
    "orchestral",
    "pop",
    "popfolk",
    "poprock",
    "reggae",
    "rock",
    "soundtrack",
    "techno",
    "trance",
    "triphop",
    "world",
    "acousticguitar",
    "bass",
    "computer",
    "drummachine",
    "drums",
    "electricguitar",
    "electricpiano",
    "guitar",
    "keyboard",
    "piano",
    "strings",
    "synthesizer",
    "violin",
    "voice",
    "emotional",
    "energetic",
    "film",
    "happy",
    "relaxing"
]

example_list = [
    "samples/guitar_acoustic.wav",
    "samples/guitar_electric.wav",
    "samples/piano.wav",
    "samples/violin.wav",
    "samples/flute.wav"
]

def predict(audio_path):
    start_time = timer()
    wav, sample_rate = torchaudio.load(audio_path)
    if sample_rate > SAMPLE_RATE:
        resampler = Resample(sample_rate, SAMPLE_RATE)
        wav = resampler(wav)
    if wav.shape[0] >= 2:
        wav = torch.mean(wav, dim=0)
        wav = wav.unsqueeze(0)
    model.eval()
    with torch.inference_mode():
        pred_probs = model(wav)
    pred_labels_and_probs = {LABELS[i]: float(pred_probs[0][i]) for i in range(len(LABELS))}
    pred_time = round(timer() - start_time, 5)
    return pred_labels_and_probs, pred_time


title = "Music Tagging"

demo = gr.Interface(fn=predict,
                    inputs=gr.Audio(type="filepath"),
                    outputs=[gr.Label(num_top_classes=10, label="Predictions"), 
                             gr.Number(label="Prediction time (s)")],
                    examples=example_list, 
                    title=title)

demo.launch(debug=False)