File size: 23,208 Bytes
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b10a55
5d27ce5
 
 
 
 
 
 
 
 
 
774c0b6
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
066481f
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66091e6
 
 
 
 
5d27ce5
 
 
 
 
 
 
66091e6
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab67c6
5d27ce5
 
 
dab67c6
 
 
5d27ce5
 
 
 
 
 
 
dab67c6
5d27ce5
 
 
 
 
 
 
 
 
 
dab67c6
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab67c6
 
 
 
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7193c01
5d27ce5
 
 
 
 
 
 
 
 
 
7193c01
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734926b
 
 
5d27ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e5329
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#@title Load packages
import subprocess
import gc
import pandas as pd
import multiprocessing as mp
import datashader as ds
import panel as pn
import param
from holoviews.operation import decimate
from holoviews.operation.datashader import datashade, rasterize, dynspread
from holoviews import dim, opts
from holoviews.selection import link_selections
from holoviews.streams import Selection1D
import holoviews as hv
import matplotlib.pyplot as plt
import bokeh
import colorcet as cc
from colorcet.plotting import swatch

from matplotlib import cm, colors

from bokeh.settings import settings
from bokeh.models import HoverTool

from urllib import request

import numpy as np
np.random.seed(42)

from io import StringIO

from itertools import chain, combinations
from collections import defaultdict

hv.extension('bokeh', logo=False)
pn.extension(design="bootstrap")

from collections import Counter

from Bio.Blast.NCBIWWW import qblast
from Bio.Blast import NCBIXML

#@title Functions to read in dataset, set up plotting

def drop_samples(ix, max_reads):
    """Return indices of random samples from a batch of reads"""
    if len(ix) > max_reads:
        ix = np.random.choice(ix, size=max_reads, replace=False)
    return ix

def downsample(a, max_reads=50, nbins=250):
    """Drop samples from dataset in regions of the 2D histogram that exceed a threshold (max_reads)"""
    #nbins = 500
    h = np.histogram2d(a[:,0], a[:,1], bins=nbins)
    bins_y = np.searchsorted(h[2], a[:,1])
    bins_x = np.searchsorted(h[1], a[:,0])
    d = defaultdict(list)
    for i in range(len(a)):
        d[(bins_x[i], bins_y[i])].append(i)
    return  np.array(list(chain.from_iterable(drop_samples(v,max_reads) for v in d.values())))

def remove_ids(df, rm_list):
    return df[~df['id'].isin(rm_list)]

def get_category_labels(read_ids, label_files):
    """Assign labels to reads based on files with lists. Reads that do not appear in a list are labelled 0.
    All others are assigned integer labels corresponding to the order in which the files are listed - unless
     they are present in more than one set, in which case they are assigned to an additional category."""
    mask = np.array(len(read_ids)*[0], dtype="int32")
    if len(label_files) == 0:
        print("Nothing to label.")
        return mask
    # iterate over lists of classified reads and assign integer labels
    all_sets = []
    for i, cat in enumerate(label_files):
        seq_set = {j.strip("\n") for j in open(cat)}
        all_sets.append(seq_set)
        np.put(mask, np.where([seqid in seq_set for seqid in read_ids]), [i+1])
    #check if lists overlap
    print(f"{i+1} class(es).")
    nt = lambda a, b: all_sets[a].intersection(all_sets[b])
    if in_multiple := set().union(
        *[nt(*j) for j in combinations(range(i + 1), 2)]
    ):
        np.put(mask, np.where([seqid in in_multiple for seqid in read_ids]), [i+2])
        print(f"Adding extra bin containing intersect of sets: {i + 2}")
    return mask

def load_df(data, samples_bin=50, max_reads=50000000):
    """Determine whether to downsample the dataset and fetch indices, then load into dataframe"""
    if len(data['vae']) > max_reads:
        print("Downsampling data.")
        idxs = downsample(data["vae"], samples_bin)
        print("Downsampled.")
    else:
        idxs = np.array(range(len(data['vae'])))

    df = pd.DataFrame(data=data['vae'][idxs,:], columns=['x', 'y'])
    df['id'] = pd.Series(data["reads"][idxs])
    df['hex'] = pd.Series(data['annot'][idxs])
    df['fastk'] = pd.Series(data['slice'][idxs])
    df['bin'] = 99
    df['classes'] = pd.Categorical(data['classes'][idxs], ordered=True)
    #print(df)
    return df


clrs = ['#E8ECFB', '#D9CCE3', '#D1BBD7', '#CAACCB', '#BA8DB4',
                '#AE76A3', '#AA6F9E', '#994F88', '#882E72', '#1965B0',
                '#437DBF', '#5289C7', '#6195CF', '#7BAFDE', '#4EB265',
                '#90C987', '#CAE0AB', '#F7F056', '#F7CB45', '#F6C141',
                '#F4A736', '#F1932D', '#EE8026', '#E8601C', '#E65518',
                '#DC050C', '#A5170E', '#72190E', '#42150A']
indexes = [[9], [9, 25], [9, 17, 25], [9, 14, 17, 25], [9, 13, 14, 17,
            25], [9, 13, 14, 16, 17, 25], [8, 9, 13, 14, 16, 17, 25], [8,
            9, 13, 14, 16, 17, 22, 25], [8, 9, 13, 14, 16, 17, 22, 25, 27],
            [8, 9, 13, 14, 16, 17, 20, 23, 25, 27], [8, 9, 11, 13, 14, 16,
            17, 20, 23, 25, 27], [2, 5, 8, 9, 11, 13, 14, 16, 17, 20, 23,
            25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 20, 23, 25], [2, 5,
            8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25], [2, 5, 8, 9, 11,
            13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 8, 9, 11,
            13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,
            13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,
            13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8,
            9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4,
            6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26,
            27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20,
            22, 24, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15,
            16, 17, 18, 20, 22, 24, 25, 26, 27, 28], [0, 1, 3, 4, 6, 7, 8,
            9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28]]


# Interactive plotting

class Scatter(param.Parameterized):
    """Build scatterplot for reads. Set up widgets to control display parameters, and
    the number of discrete bins for the coding density annotation (num_bins) and the
    coverage range displayed (upper, lower)."""

    min_alpha = param.Integer(50,  bounds=(10, 255), doc="Set the minimum alpha value for points.", label="Minimum alpha")
    num_bins = param.Integer(5, bounds=(1, 10), doc="Select number of quantile bins for coding density (hex).", label="Number of bins")
    upper = param.Integer(32767, doc="Maximum k-mer coverage to display.", label="Max k-mer coverage")
    lower = param.Integer(0, doc="Minimum k-mer coverage to display.", label="Min k-mer coverage")
    bg = param.Selector(["white", "grey", "black"], doc="Select the background colour for the plot.", label="Background colour")
    show_class = param.ListSelector(default=[], objects=[], label='Select classes')
    color_cat = param.Selector(["glasbey_hv", "colorblind_bokeh", "tol_rainbow"], label='Categorical colour scheme')
    action = param.Action(lambda x: x.param.trigger('action'), label='Update histogram for current selection')
    reverse_colours = param.Boolean(doc="Reverse colour map for binned annotations", label="Reverse colours")

    #pn.config.throttled = True

    def __init__(self, df_complete, sample_id, **kwargs):
        super(Scatter, self).__init__(**kwargs)

            ####
        #FIXME
        def column_width(plot, element):
            """Manually override column widths"""
            plot.handles['table'].columns[2].width = 205
            for i in [0, 1, 3, 4, 5, 6]:
                plot.handles['table'].columns[i].width = 50
            #plot.handles['table'].autosize_mode = "none"


        # Initialise dataframe
        self.df_complete = df_complete
        self.sample_id = sample_id
        self.df = self.make_bins(self.num_bins)

        # Get points, selection box, and summary t6able
        self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id'])
        self.box = hv.streams.BoundsXY(source=self.points, bounds=(-0.5, -0.5, 0.5, 0.5))
        #self.bounds, self.dmap = self.selections()
        self.bounds = hv.DynamicMap(lambda bounds: hv.Bounds(bounds), streams=[self.box])
        self.dmap = hv.DynamicMap(lambda bounds:  hv.Table(self.df[(self.df['x'] > bounds[0]) & (self.df['x'] < bounds[2]) & \
            (self.df['y'] > bounds[1]) & (self.df['y'] < bounds[3])].head(n=5000).round(2)).opts(editable=True, width=600), \
                             streams=[self.box])


        # Set up colours for classes
        self.n_classes = df_complete['classes'].nunique()
        class_list = list(range(self.n_classes))
        self.param.show_class.objects = class_list
        self.show_class = class_list

        self.cat_maps = {'glasbey_hv': cc.b_glasbey_hv,
         'colorblind_bokeh': list(hv.Cycle.default_cycles["Colorblind"]),
          }

        # Drop maps that are too short
        if self.n_classes > 23:
            self.param.color_cat.objects = ["glasbey_hv"]
        else:
            self.cat_maps["tol_rainbow"] =  [clrs[i] for i in indexes[self.n_classes]]
            if self.n_classes > 9:
                self.param.color_cat.objects = ["glasbey_hv", "tol_rainbow"]

    @pn.depends('action')
    def hist_coverage(self):
        if () in self.dmap.data:
            max_val = self.dmap.data[()]["fastk"].max()
            min_val = self.dmap.data[()]["fastk"].min()
            h_counts, h_bins = np.histogram(self.dmap.data[()]["fastk"], bins=min(50,  max_val-min_val), range=(max(1, min_val),min(10000, max_val)))
        else:
            h_counts, h_bins = np.histogram(self.df["fastk"], bins=50, range=(1,10000))
        return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="fastk")

    @pn.depends('action')
    def hist_hexamer(self):
        if () in self.dmap.data:
            #max_val = self.dmap.data[()]["hex"].max()
            #min_val = self.dmap.data[()]["hex"].min()
            h_counts, h_bins = np.histogram(self.dmap.data[()]["hex"], bins=50)
            #h_counts_base, h_bins_base = np.histogram(self.df["hex"], bins=50)

            return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer")
            # hv.Histogram((np.log1p(h_counts_base), h_bins_base)).opts(width=400, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer") +
        else:
            h_counts, h_bins = np.histogram(self.df["hex"], bins=50)
            return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer")


    def jitter(self, series):
        eps = np.finfo(np.float32).eps
        return (series + np.random.uniform(eps, 2*eps, len(series))).astype("float32")
    
    #@pn.depends('num_bins', watch=True)
    def make_bins(self, num_bins):
        """Bin coding density into quantiles, where num_bins is the number of bins. Then, call function to filter rows by coverage"""
        # If no data provided, fill with 0
        if self.df_complete['hex'].min() == self.df_complete['hex'].max():
            self.df_complete['bin'] = 0
        else:
            bins = pd.Categorical(pd.qcut(self.jitter(self.df_complete['hex']), num_bins, labels=False, duplicates='drop'))
            self.df_complete['bin'] = bins
        self.df = self.filter_df()
        return self.df

    def filter_df(self):
        """Get rows within specified coverage range, lower <= coverage <= upper. Filter selected classes"""
        if self.lower <= self.upper:
            self.df = self.df_complete.loc[(self.df_complete['fastk'] <= self.upper) & (self.df_complete['fastk'] >= self.lower)]
        else:
            self.df = self.df_complete
        if (self.df_complete['classes'].nunique() > 1) & (len(self.show_class) > 0):
            self.df = self.df[self.df['classes'].isin(self.show_class)]
        return self.df

    def colormap(self):
        """Set up colourmap using viridis, generate legend labels"""
        v = cm.get_cmap('viridis')
        colors_hex = [colors.rgb2hex(i)
                      for i in v(np.linspace(0, 1, self.num_bins))]
        if self.reverse_colours is True:
            colors_hex = colors_hex[::-1]
        legend_labels = dict(
            zip(
                list(range(self.num_bins)),
                [f"bin {i}" for i in range(self.num_bins)],
            )
        )
        return colors_hex, legend_labels

    def colormap_classes(self):
        """Set up categorical colourmap based on selection, generate legend labels"""
        colors_hex = self.cat_maps[self.color_cat][:self.n_classes]
        legend_labels = dict(
            zip(
                list(range(self.n_classes)),
                [f"class {i}" for i in range(self.n_classes)],
            )
        )
        return colors_hex, legend_labels

    @pn.depends('num_bins', 'upper', 'lower', 'show_class')
    def update_points(self):
        self.df = self.make_bins(self.num_bins)
        self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id', 'bin', 'classes'])
        return 0

    @pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'reverse_colours')
    def draw_scatter_table(self):
        self.update_points()
        colors_hex, legend_labels = self.colormap()
        return self.draw_shaded(colors_hex, legend_labels, "bin")

    @pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'color_cat')
    def draw_scatter_table_classes(self):
        self.update_points()
        colors_hex, legend_labels = self.colormap_classes()
        return self.draw_shaded(colors_hex, legend_labels, "classes")

    def draw_shaded(self, colors_hex, legend_labels, col):
        shaded = datashade(
            self.points,
            aggregator=ds.count_cat(col),
            color_key=colors_hex,
            min_alpha=self.min_alpha,
        ).opts(
            bgcolor=self.bg,
            width=700,
            height=700,
            show_grid=True,
            tools=["box_select"],
            default_tools=[],
            legend_labels=legend_labels,
            legend_position='top_right',
            legend_offset=(0, 0),
            title=f'Reads for {self.sample_id}',
        )
        return hv.Overlay([dynspread(shaded, threshold=0.7)]).collate() * self.bounds.clone()

def get_seq_file(identifier, fasta, seq_preview):
    seq_cmd = "{0} -A1 -m1 \"{1}\" {2}".format("zgrep", identifier, fasta)
    seq = subprocess.run(seq_cmd, capture_output=True, shell=True)
    if seq.returncode != 0:
        return 1
    seqrecord = seq.stdout.decode("utf-8")
    seq_preview.object = "{}".format(seqrecord)
    return seqrecord


def box_selected_data_dl(box, df):
    """Select rows in table corresponding to selected points"""
    return df[(df['x'] > box.bounds[0]) & (df['x'] < box.bounds[2]) & \
        (df['y'] > box.bounds[1]) & (df['y'] < box.bounds[3])]

def blast_function(seq):
    """ If you would like to use a custom command to run blast, replace this function.
        For example. on local blast server:
        blast_cmd = "timeout 300s curl -T temp.fa http://172.27.25.136:35227 | head -n5"
        blast = subprocess.run(blast_cmd, capture_output=True, shell=True)
        if blast.returncode == 0:
            blast_pane.object = '{0}'.format(blast.stdout.decode('utf-8'))
        else:
                #text_blast.value
                blast_pane.object = 'Non-zero return code {} {}'.format(blast, blast_cmd)
    """
    #seq = "{}".format(open("temp.fa", "r").read())
    result_handle = qblast("blastn", "nt", seq, megablast=True)
    blast_record = NCBIXML.read(result_handle)
    if len(blast_record.alignments) > 0:
        return "\n".join([t.title for t in blast_record.alignments[:5]])#blast_record.alignments[0].title
    else:
      return "No result"


def make_panel(scatter, fasta):

    def button_readid_click(event):
        text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])

    def button_click_seq(event):
            if text_readid.value == "...":
                text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
            if get_seq_file(text_readid.value, fasta, seq_preview) == 0:
                seq = "{}".format(open("temp.fa", "r").read())

    def button_click_blast(event):
        if text_readid.value == "...":
            text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
        blast_pane.object = "...running..."
        idle.value = True

        seq = get_seq_file(text_readid.value, fasta, seq_preview)
        if  seq != 1:
            #seq = get_seq_file(text_readid.value, fasta, seq_preview) #"{}".format(open("temp.fa", "r").read())
            blast_pane.object = blast_function(seq)
        else:
            blast_pane.object == 'Failed to get fasta'
        idle.value = False

    def find_read(event):
        if text_readid.value == "...":
            text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
            coord.value = ""
        locate = scatter.df.loc[scatter.df['id'] == text_readid.value]
        coord.value = "X: {:.4g}, Y: {:.4g}".format(
            locate['x'].values[0], locate['y'].values[0])

    def download_csv():
        reads = box_selected_data_dl(scatter.box, scatter.df)
        sio = StringIO()
        reads.to_csv(sio)
        sio.seek(0)
        sio.flush()
        return sio

    # Define buttons, panes, and actions
    button_readid = pn.widgets.Button(
        name='Get first sequence in selection', button_type='primary')
    text_readid = pn.widgets.TextInput(value='...')
    button_readid.on_click(button_readid_click)

    idle = pn.indicators.LoadingSpinner(value=False, width=50, height=50)

    button_blast = pn.widgets.Button(
        name='blastn selected sequence', button_type='primary')

    button_seq = pn.widgets.Button(name="Get sequence", button_type="primary")

    blast_pane = pn.pane.HTML("""Do megablast""", styles={'background-color': '#fcfcfc', 'border': '1px solid black',
                                                         'padding': '5px', 'overflow': 'scroll', 'width': '310px', 'height': '100px'})

    button_blast.on_click(button_click_blast)
    button_seq.on_click(button_click_seq)

    coord = pn.widgets.StaticText(value="")
    button_find = pn.widgets.Button(
        name='Find read coordinates', button_type='primary')
    button_find.on_click(find_read)

    seq_preview = pn.pane.HTML(""" """, styles={'background-color': '#fcfcfc', 'border': '1px solid black',
                                               'padding': '5px', 'overflow': 'scroll', 'width': '700px', 'height': '50px'})

    file_download = pn.widgets.FileDownload(callback=download_csv, filename='reads.txt',
                                 label='Download selected reads', button_type='success', auto=True, embed=False)

    def lay_out_elements():
        # Show class tab if multiple classes present
        if scatter.n_classes > 1:
            tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table),
                        ('Classes', scatter.draw_scatter_table_classes), dynamic=True)
        else:
            tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table))
        #tabs = scatter.draw_scatter_table

        # Widgets for blast, displaying sequence
        widgets_read_selection = pn.WidgetBox(pn.Row(text_readid), pn.Row(button_readid), pn.Row(pn.widgets.StaticText(
            name='Note', value='Click to update after drawing new selection')), pn.Row(button_seq), pn.Row(button_find), pn.Row(coord))

        widgets_blast = pn.WidgetBox(
            pn.Row(blast_pane), pn.Row(button_blast), idle,)

        # Configure class selection widget
        if len(scatter.param.show_class.objects) <= 11:
            multi_select = pn.widgets.CheckButtonGroup.from_param(
                scatter.param.show_class)
        else:
            multi_select = pn.widgets.MultiChoice.from_param(
                scatter.param.show_class)

        # Lay out widgets for parameter settings
        param_layout = pn.WidgetBox(scatter.param.min_alpha, scatter.param.num_bins, scatter.param.reverse_colours, scatter.param.upper, scatter.param.lower,
                                    'Background colour', pn.widgets.RadioButtonGroup.from_param(
                                        scatter.param.bg, name="Background colour"),
                                    )

        # Add elements to right column, depending on available annotations
        right_col = pn.Column(scatter.dmap)
        # Add histograms
        if plain_scatter != "True":
            for el in [scatter.hist_coverage, scatter.hist_hexamer, scatter.param.action]:
                right_col.append(el)
        else:
            scatter.param.num_bins.constant = True
            scatter.param.upper.constant = True
            scatter.param.lower.constant = True

        # Add widgets to filter by class
        if scatter.n_classes > 1:
            param_layout_classes = pn.WidgetBox(
                    "Filter classified sequences", scatter.param.color_cat, multi_select, width=600)
            right_col.append(param_layout_classes)


        filtered_view = pn.Row(
            pn.Column(param_layout,
                      widgets_read_selection,
                      widgets_blast,
                      pn.Row(file_download)),
            pn.Column(pn.panel(tabs), pn.Row(seq_preview)),
            right_col
        )
        return filtered_view

    return lay_out_elements()

data_path = ""
#request.urlretrieve("https://cobiontid.github.io/examples/ilCarKade1_204_downsampled.npz", "ilCarKade1_204_downsampled.npz")
#request.urlretrieve("https://cobiontid.github.io/examples/Trypanosomatidae.finalreads", "Trypanosomatidae.finalreads")
#request.urlretrieve("https://vae.cog.sanger.ac.uk/downsampled.fa.gz", "downsampled.fa.gz")

use_own_data = False #@param {type:"boolean"}
import sys

def ids_width(reads):
#""" Get max length for read ids to prevent truncation by np.loadtxt() """
    wc = subprocess.run(["wc", "-L", reads], capture_output=True)
    if wc.returncode == 0:
        width = int(wc.stdout.decode('utf-8').split()[0])
        return width
    else:
        sys.exit(1)

#@markdown Your sample's name.
sample_id = "my_species" #@param {type:"string"}

#@markdown Specify your file paths.
read_ids = "example.reads.ids.txt" #@param {type:"string"}
vae_file = "example.vae.out.2d.0" #@param {type:"string"}
coverage_file  = "example.median_31mer.txt" #@param {type:"string"}
density_file = "example.reads.hexsum" #@param {type:"string"}
fasta = "reads.fa.gz" #@param {type:"string"}
labelled_reads = "example.reads" #@param {type:"string"}

if use_own_data == True:
    width = ids_width(read_ids)
    # load own data
    data_dict = {"vae": np.loadtxt(vae_file, dtype="float32"),
             "slice": np.loadtxt(coverage_file, dtype="int32"),
             "annot": np.loadtxt(density_file, dtype="float32"),
             "reads": np.loadtxt(read_ids, dtype="U{}".format(width))
             }
    data_dict["classes"] = get_category_labels(data_dict["reads"], [labelled_reads])
else:
    fasta = "downsampled.fa.gz"
    sample_id = "ilCarKade1"
    data_dict = dict(np.load("ilCarKade1_204_downsampled.npz"))
    data_dict["classes"] = get_category_labels(data_dict["reads"], ["Trypanosomatidae.finalreads"])

import os
import gc
assert os.path.isfile(fasta)
xy = load_df(data_dict)
scatter = Scatter(xy, sample_id)
plain_scatter = "False"
view = make_panel(scatter, fasta)
gc.collect()

hv.extension("bokeh")
pn.extension()
view.servable("Read VAE")