Spaces:
Sleeping
Sleeping
File size: 23,208 Bytes
5d27ce5 4b10a55 5d27ce5 774c0b6 5d27ce5 066481f 5d27ce5 66091e6 5d27ce5 66091e6 5d27ce5 dab67c6 5d27ce5 dab67c6 5d27ce5 dab67c6 5d27ce5 dab67c6 5d27ce5 dab67c6 5d27ce5 7193c01 5d27ce5 7193c01 5d27ce5 734926b 5d27ce5 a8e5329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
#@title Load packages
import subprocess
import gc
import pandas as pd
import multiprocessing as mp
import datashader as ds
import panel as pn
import param
from holoviews.operation import decimate
from holoviews.operation.datashader import datashade, rasterize, dynspread
from holoviews import dim, opts
from holoviews.selection import link_selections
from holoviews.streams import Selection1D
import holoviews as hv
import matplotlib.pyplot as plt
import bokeh
import colorcet as cc
from colorcet.plotting import swatch
from matplotlib import cm, colors
from bokeh.settings import settings
from bokeh.models import HoverTool
from urllib import request
import numpy as np
np.random.seed(42)
from io import StringIO
from itertools import chain, combinations
from collections import defaultdict
hv.extension('bokeh', logo=False)
pn.extension(design="bootstrap")
from collections import Counter
from Bio.Blast.NCBIWWW import qblast
from Bio.Blast import NCBIXML
#@title Functions to read in dataset, set up plotting
def drop_samples(ix, max_reads):
"""Return indices of random samples from a batch of reads"""
if len(ix) > max_reads:
ix = np.random.choice(ix, size=max_reads, replace=False)
return ix
def downsample(a, max_reads=50, nbins=250):
"""Drop samples from dataset in regions of the 2D histogram that exceed a threshold (max_reads)"""
#nbins = 500
h = np.histogram2d(a[:,0], a[:,1], bins=nbins)
bins_y = np.searchsorted(h[2], a[:,1])
bins_x = np.searchsorted(h[1], a[:,0])
d = defaultdict(list)
for i in range(len(a)):
d[(bins_x[i], bins_y[i])].append(i)
return np.array(list(chain.from_iterable(drop_samples(v,max_reads) for v in d.values())))
def remove_ids(df, rm_list):
return df[~df['id'].isin(rm_list)]
def get_category_labels(read_ids, label_files):
"""Assign labels to reads based on files with lists. Reads that do not appear in a list are labelled 0.
All others are assigned integer labels corresponding to the order in which the files are listed - unless
they are present in more than one set, in which case they are assigned to an additional category."""
mask = np.array(len(read_ids)*[0], dtype="int32")
if len(label_files) == 0:
print("Nothing to label.")
return mask
# iterate over lists of classified reads and assign integer labels
all_sets = []
for i, cat in enumerate(label_files):
seq_set = {j.strip("\n") for j in open(cat)}
all_sets.append(seq_set)
np.put(mask, np.where([seqid in seq_set for seqid in read_ids]), [i+1])
#check if lists overlap
print(f"{i+1} class(es).")
nt = lambda a, b: all_sets[a].intersection(all_sets[b])
if in_multiple := set().union(
*[nt(*j) for j in combinations(range(i + 1), 2)]
):
np.put(mask, np.where([seqid in in_multiple for seqid in read_ids]), [i+2])
print(f"Adding extra bin containing intersect of sets: {i + 2}")
return mask
def load_df(data, samples_bin=50, max_reads=50000000):
"""Determine whether to downsample the dataset and fetch indices, then load into dataframe"""
if len(data['vae']) > max_reads:
print("Downsampling data.")
idxs = downsample(data["vae"], samples_bin)
print("Downsampled.")
else:
idxs = np.array(range(len(data['vae'])))
df = pd.DataFrame(data=data['vae'][idxs,:], columns=['x', 'y'])
df['id'] = pd.Series(data["reads"][idxs])
df['hex'] = pd.Series(data['annot'][idxs])
df['fastk'] = pd.Series(data['slice'][idxs])
df['bin'] = 99
df['classes'] = pd.Categorical(data['classes'][idxs], ordered=True)
#print(df)
return df
clrs = ['#E8ECFB', '#D9CCE3', '#D1BBD7', '#CAACCB', '#BA8DB4',
'#AE76A3', '#AA6F9E', '#994F88', '#882E72', '#1965B0',
'#437DBF', '#5289C7', '#6195CF', '#7BAFDE', '#4EB265',
'#90C987', '#CAE0AB', '#F7F056', '#F7CB45', '#F6C141',
'#F4A736', '#F1932D', '#EE8026', '#E8601C', '#E65518',
'#DC050C', '#A5170E', '#72190E', '#42150A']
indexes = [[9], [9, 25], [9, 17, 25], [9, 14, 17, 25], [9, 13, 14, 17,
25], [9, 13, 14, 16, 17, 25], [8, 9, 13, 14, 16, 17, 25], [8,
9, 13, 14, 16, 17, 22, 25], [8, 9, 13, 14, 16, 17, 22, 25, 27],
[8, 9, 13, 14, 16, 17, 20, 23, 25, 27], [8, 9, 11, 13, 14, 16,
17, 20, 23, 25, 27], [2, 5, 8, 9, 11, 13, 14, 16, 17, 20, 23,
25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 20, 23, 25], [2, 5,
8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25], [2, 5, 8, 9, 11,
13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 8, 9, 11,
13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,
13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,
13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8,
9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4,
6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26,
27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20,
22, 24, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15,
16, 17, 18, 20, 22, 24, 25, 26, 27, 28], [0, 1, 3, 4, 6, 7, 8,
9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28]]
# Interactive plotting
class Scatter(param.Parameterized):
"""Build scatterplot for reads. Set up widgets to control display parameters, and
the number of discrete bins for the coding density annotation (num_bins) and the
coverage range displayed (upper, lower)."""
min_alpha = param.Integer(50, bounds=(10, 255), doc="Set the minimum alpha value for points.", label="Minimum alpha")
num_bins = param.Integer(5, bounds=(1, 10), doc="Select number of quantile bins for coding density (hex).", label="Number of bins")
upper = param.Integer(32767, doc="Maximum k-mer coverage to display.", label="Max k-mer coverage")
lower = param.Integer(0, doc="Minimum k-mer coverage to display.", label="Min k-mer coverage")
bg = param.Selector(["white", "grey", "black"], doc="Select the background colour for the plot.", label="Background colour")
show_class = param.ListSelector(default=[], objects=[], label='Select classes')
color_cat = param.Selector(["glasbey_hv", "colorblind_bokeh", "tol_rainbow"], label='Categorical colour scheme')
action = param.Action(lambda x: x.param.trigger('action'), label='Update histogram for current selection')
reverse_colours = param.Boolean(doc="Reverse colour map for binned annotations", label="Reverse colours")
#pn.config.throttled = True
def __init__(self, df_complete, sample_id, **kwargs):
super(Scatter, self).__init__(**kwargs)
####
#FIXME
def column_width(plot, element):
"""Manually override column widths"""
plot.handles['table'].columns[2].width = 205
for i in [0, 1, 3, 4, 5, 6]:
plot.handles['table'].columns[i].width = 50
#plot.handles['table'].autosize_mode = "none"
# Initialise dataframe
self.df_complete = df_complete
self.sample_id = sample_id
self.df = self.make_bins(self.num_bins)
# Get points, selection box, and summary t6able
self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id'])
self.box = hv.streams.BoundsXY(source=self.points, bounds=(-0.5, -0.5, 0.5, 0.5))
#self.bounds, self.dmap = self.selections()
self.bounds = hv.DynamicMap(lambda bounds: hv.Bounds(bounds), streams=[self.box])
self.dmap = hv.DynamicMap(lambda bounds: hv.Table(self.df[(self.df['x'] > bounds[0]) & (self.df['x'] < bounds[2]) & \
(self.df['y'] > bounds[1]) & (self.df['y'] < bounds[3])].head(n=5000).round(2)).opts(editable=True, width=600), \
streams=[self.box])
# Set up colours for classes
self.n_classes = df_complete['classes'].nunique()
class_list = list(range(self.n_classes))
self.param.show_class.objects = class_list
self.show_class = class_list
self.cat_maps = {'glasbey_hv': cc.b_glasbey_hv,
'colorblind_bokeh': list(hv.Cycle.default_cycles["Colorblind"]),
}
# Drop maps that are too short
if self.n_classes > 23:
self.param.color_cat.objects = ["glasbey_hv"]
else:
self.cat_maps["tol_rainbow"] = [clrs[i] for i in indexes[self.n_classes]]
if self.n_classes > 9:
self.param.color_cat.objects = ["glasbey_hv", "tol_rainbow"]
@pn.depends('action')
def hist_coverage(self):
if () in self.dmap.data:
max_val = self.dmap.data[()]["fastk"].max()
min_val = self.dmap.data[()]["fastk"].min()
h_counts, h_bins = np.histogram(self.dmap.data[()]["fastk"], bins=min(50, max_val-min_val), range=(max(1, min_val),min(10000, max_val)))
else:
h_counts, h_bins = np.histogram(self.df["fastk"], bins=50, range=(1,10000))
return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="fastk")
@pn.depends('action')
def hist_hexamer(self):
if () in self.dmap.data:
#max_val = self.dmap.data[()]["hex"].max()
#min_val = self.dmap.data[()]["hex"].min()
h_counts, h_bins = np.histogram(self.dmap.data[()]["hex"], bins=50)
#h_counts_base, h_bins_base = np.histogram(self.df["hex"], bins=50)
return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer")
# hv.Histogram((np.log1p(h_counts_base), h_bins_base)).opts(width=400, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer") +
else:
h_counts, h_bins = np.histogram(self.df["hex"], bins=50)
return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer")
def jitter(self, series):
eps = np.finfo(np.float32).eps
return (series + np.random.uniform(eps, 2*eps, len(series))).astype("float32")
#@pn.depends('num_bins', watch=True)
def make_bins(self, num_bins):
"""Bin coding density into quantiles, where num_bins is the number of bins. Then, call function to filter rows by coverage"""
# If no data provided, fill with 0
if self.df_complete['hex'].min() == self.df_complete['hex'].max():
self.df_complete['bin'] = 0
else:
bins = pd.Categorical(pd.qcut(self.jitter(self.df_complete['hex']), num_bins, labels=False, duplicates='drop'))
self.df_complete['bin'] = bins
self.df = self.filter_df()
return self.df
def filter_df(self):
"""Get rows within specified coverage range, lower <= coverage <= upper. Filter selected classes"""
if self.lower <= self.upper:
self.df = self.df_complete.loc[(self.df_complete['fastk'] <= self.upper) & (self.df_complete['fastk'] >= self.lower)]
else:
self.df = self.df_complete
if (self.df_complete['classes'].nunique() > 1) & (len(self.show_class) > 0):
self.df = self.df[self.df['classes'].isin(self.show_class)]
return self.df
def colormap(self):
"""Set up colourmap using viridis, generate legend labels"""
v = cm.get_cmap('viridis')
colors_hex = [colors.rgb2hex(i)
for i in v(np.linspace(0, 1, self.num_bins))]
if self.reverse_colours is True:
colors_hex = colors_hex[::-1]
legend_labels = dict(
zip(
list(range(self.num_bins)),
[f"bin {i}" for i in range(self.num_bins)],
)
)
return colors_hex, legend_labels
def colormap_classes(self):
"""Set up categorical colourmap based on selection, generate legend labels"""
colors_hex = self.cat_maps[self.color_cat][:self.n_classes]
legend_labels = dict(
zip(
list(range(self.n_classes)),
[f"class {i}" for i in range(self.n_classes)],
)
)
return colors_hex, legend_labels
@pn.depends('num_bins', 'upper', 'lower', 'show_class')
def update_points(self):
self.df = self.make_bins(self.num_bins)
self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id', 'bin', 'classes'])
return 0
@pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'reverse_colours')
def draw_scatter_table(self):
self.update_points()
colors_hex, legend_labels = self.colormap()
return self.draw_shaded(colors_hex, legend_labels, "bin")
@pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'color_cat')
def draw_scatter_table_classes(self):
self.update_points()
colors_hex, legend_labels = self.colormap_classes()
return self.draw_shaded(colors_hex, legend_labels, "classes")
def draw_shaded(self, colors_hex, legend_labels, col):
shaded = datashade(
self.points,
aggregator=ds.count_cat(col),
color_key=colors_hex,
min_alpha=self.min_alpha,
).opts(
bgcolor=self.bg,
width=700,
height=700,
show_grid=True,
tools=["box_select"],
default_tools=[],
legend_labels=legend_labels,
legend_position='top_right',
legend_offset=(0, 0),
title=f'Reads for {self.sample_id}',
)
return hv.Overlay([dynspread(shaded, threshold=0.7)]).collate() * self.bounds.clone()
def get_seq_file(identifier, fasta, seq_preview):
seq_cmd = "{0} -A1 -m1 \"{1}\" {2}".format("zgrep", identifier, fasta)
seq = subprocess.run(seq_cmd, capture_output=True, shell=True)
if seq.returncode != 0:
return 1
seqrecord = seq.stdout.decode("utf-8")
seq_preview.object = "{}".format(seqrecord)
return seqrecord
def box_selected_data_dl(box, df):
"""Select rows in table corresponding to selected points"""
return df[(df['x'] > box.bounds[0]) & (df['x'] < box.bounds[2]) & \
(df['y'] > box.bounds[1]) & (df['y'] < box.bounds[3])]
def blast_function(seq):
""" If you would like to use a custom command to run blast, replace this function.
For example. on local blast server:
blast_cmd = "timeout 300s curl -T temp.fa http://172.27.25.136:35227 | head -n5"
blast = subprocess.run(blast_cmd, capture_output=True, shell=True)
if blast.returncode == 0:
blast_pane.object = '{0}'.format(blast.stdout.decode('utf-8'))
else:
#text_blast.value
blast_pane.object = 'Non-zero return code {} {}'.format(blast, blast_cmd)
"""
#seq = "{}".format(open("temp.fa", "r").read())
result_handle = qblast("blastn", "nt", seq, megablast=True)
blast_record = NCBIXML.read(result_handle)
if len(blast_record.alignments) > 0:
return "\n".join([t.title for t in blast_record.alignments[:5]])#blast_record.alignments[0].title
else:
return "No result"
def make_panel(scatter, fasta):
def button_readid_click(event):
text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
def button_click_seq(event):
if text_readid.value == "...":
text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
if get_seq_file(text_readid.value, fasta, seq_preview) == 0:
seq = "{}".format(open("temp.fa", "r").read())
def button_click_blast(event):
if text_readid.value == "...":
text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
blast_pane.object = "...running..."
idle.value = True
seq = get_seq_file(text_readid.value, fasta, seq_preview)
if seq != 1:
#seq = get_seq_file(text_readid.value, fasta, seq_preview) #"{}".format(open("temp.fa", "r").read())
blast_pane.object = blast_function(seq)
else:
blast_pane.object == 'Failed to get fasta'
idle.value = False
def find_read(event):
if text_readid.value == "...":
text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0])
coord.value = ""
locate = scatter.df.loc[scatter.df['id'] == text_readid.value]
coord.value = "X: {:.4g}, Y: {:.4g}".format(
locate['x'].values[0], locate['y'].values[0])
def download_csv():
reads = box_selected_data_dl(scatter.box, scatter.df)
sio = StringIO()
reads.to_csv(sio)
sio.seek(0)
sio.flush()
return sio
# Define buttons, panes, and actions
button_readid = pn.widgets.Button(
name='Get first sequence in selection', button_type='primary')
text_readid = pn.widgets.TextInput(value='...')
button_readid.on_click(button_readid_click)
idle = pn.indicators.LoadingSpinner(value=False, width=50, height=50)
button_blast = pn.widgets.Button(
name='blastn selected sequence', button_type='primary')
button_seq = pn.widgets.Button(name="Get sequence", button_type="primary")
blast_pane = pn.pane.HTML("""Do megablast""", styles={'background-color': '#fcfcfc', 'border': '1px solid black',
'padding': '5px', 'overflow': 'scroll', 'width': '310px', 'height': '100px'})
button_blast.on_click(button_click_blast)
button_seq.on_click(button_click_seq)
coord = pn.widgets.StaticText(value="")
button_find = pn.widgets.Button(
name='Find read coordinates', button_type='primary')
button_find.on_click(find_read)
seq_preview = pn.pane.HTML(""" """, styles={'background-color': '#fcfcfc', 'border': '1px solid black',
'padding': '5px', 'overflow': 'scroll', 'width': '700px', 'height': '50px'})
file_download = pn.widgets.FileDownload(callback=download_csv, filename='reads.txt',
label='Download selected reads', button_type='success', auto=True, embed=False)
def lay_out_elements():
# Show class tab if multiple classes present
if scatter.n_classes > 1:
tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table),
('Classes', scatter.draw_scatter_table_classes), dynamic=True)
else:
tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table))
#tabs = scatter.draw_scatter_table
# Widgets for blast, displaying sequence
widgets_read_selection = pn.WidgetBox(pn.Row(text_readid), pn.Row(button_readid), pn.Row(pn.widgets.StaticText(
name='Note', value='Click to update after drawing new selection')), pn.Row(button_seq), pn.Row(button_find), pn.Row(coord))
widgets_blast = pn.WidgetBox(
pn.Row(blast_pane), pn.Row(button_blast), idle,)
# Configure class selection widget
if len(scatter.param.show_class.objects) <= 11:
multi_select = pn.widgets.CheckButtonGroup.from_param(
scatter.param.show_class)
else:
multi_select = pn.widgets.MultiChoice.from_param(
scatter.param.show_class)
# Lay out widgets for parameter settings
param_layout = pn.WidgetBox(scatter.param.min_alpha, scatter.param.num_bins, scatter.param.reverse_colours, scatter.param.upper, scatter.param.lower,
'Background colour', pn.widgets.RadioButtonGroup.from_param(
scatter.param.bg, name="Background colour"),
)
# Add elements to right column, depending on available annotations
right_col = pn.Column(scatter.dmap)
# Add histograms
if plain_scatter != "True":
for el in [scatter.hist_coverage, scatter.hist_hexamer, scatter.param.action]:
right_col.append(el)
else:
scatter.param.num_bins.constant = True
scatter.param.upper.constant = True
scatter.param.lower.constant = True
# Add widgets to filter by class
if scatter.n_classes > 1:
param_layout_classes = pn.WidgetBox(
"Filter classified sequences", scatter.param.color_cat, multi_select, width=600)
right_col.append(param_layout_classes)
filtered_view = pn.Row(
pn.Column(param_layout,
widgets_read_selection,
widgets_blast,
pn.Row(file_download)),
pn.Column(pn.panel(tabs), pn.Row(seq_preview)),
right_col
)
return filtered_view
return lay_out_elements()
data_path = ""
#request.urlretrieve("https://cobiontid.github.io/examples/ilCarKade1_204_downsampled.npz", "ilCarKade1_204_downsampled.npz")
#request.urlretrieve("https://cobiontid.github.io/examples/Trypanosomatidae.finalreads", "Trypanosomatidae.finalreads")
#request.urlretrieve("https://vae.cog.sanger.ac.uk/downsampled.fa.gz", "downsampled.fa.gz")
use_own_data = False #@param {type:"boolean"}
import sys
def ids_width(reads):
#""" Get max length for read ids to prevent truncation by np.loadtxt() """
wc = subprocess.run(["wc", "-L", reads], capture_output=True)
if wc.returncode == 0:
width = int(wc.stdout.decode('utf-8').split()[0])
return width
else:
sys.exit(1)
#@markdown Your sample's name.
sample_id = "my_species" #@param {type:"string"}
#@markdown Specify your file paths.
read_ids = "example.reads.ids.txt" #@param {type:"string"}
vae_file = "example.vae.out.2d.0" #@param {type:"string"}
coverage_file = "example.median_31mer.txt" #@param {type:"string"}
density_file = "example.reads.hexsum" #@param {type:"string"}
fasta = "reads.fa.gz" #@param {type:"string"}
labelled_reads = "example.reads" #@param {type:"string"}
if use_own_data == True:
width = ids_width(read_ids)
# load own data
data_dict = {"vae": np.loadtxt(vae_file, dtype="float32"),
"slice": np.loadtxt(coverage_file, dtype="int32"),
"annot": np.loadtxt(density_file, dtype="float32"),
"reads": np.loadtxt(read_ids, dtype="U{}".format(width))
}
data_dict["classes"] = get_category_labels(data_dict["reads"], [labelled_reads])
else:
fasta = "downsampled.fa.gz"
sample_id = "ilCarKade1"
data_dict = dict(np.load("ilCarKade1_204_downsampled.npz"))
data_dict["classes"] = get_category_labels(data_dict["reads"], ["Trypanosomatidae.finalreads"])
import os
import gc
assert os.path.isfile(fasta)
xy = load_df(data_dict)
scatter = Scatter(xy, sample_id)
plain_scatter = "False"
view = make_panel(scatter, fasta)
gc.collect()
hv.extension("bokeh")
pn.extension()
view.servable("Read VAE") |