File size: 7,258 Bytes
29546b4
91e8a06
6dff40c
29546b4
 
 
 
 
 
91e8a06
32b707a
 
29546b4
4f3c2a8
43d9122
 
6368c8e
 
 
43d9122
cba6080
 
 
5952263
 
 
 
 
 
 
 
 
0885182
fa0f3d4
 
 
 
b318cb4
 
0885182
5952263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01ea22b
32b707a
29546b4
 
 
5be48d2
58733e4
29546b4
b98f07f
694d9d3
 
 
 
 
 
 
e7226cc
 
29546b4
d4d8b2d
c40ac63
d4d8b2d
 
 
 
 
 
 
 
 
 
 
 
 
c40ac63
 
 
 
3aa78c2
2a860f6
f7d1b51
d4d8b2d
 
3aa78c2
b98f07f
3aa78c2
 
 
 
 
 
 
 
 
b98f07f
072fab0
3aa78c2
 
 
 
 
 
 
 
072fab0
3aa78c2
 
 
 
b98f07f
 
f7d1b51
58733e4
2a73469
 
fccd458
8ff8652
 
 
 
 
 
2a860f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from dataclasses import dataclass
from enum import Enum

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("acc_overall", "acc", "Acc_All")
    task1 = Task("acc_sel", "acc_sel", "Acc_Sel")
    task2 = Task("acc_el", "acc_el", "Acc_El")
    task3 = Task("acc_perturb", "perturb_score", "Acc_Perturb")
    task4 = Task("score_consistency", "consist_score", "Consistency_Score")
    
class AssetTasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("acc_electric_motor", "acc_electric_motor", "acc_electric_motor")
    task1 = Task("acc_steam_turbine", "acc_steam_turbine", "acc_steam_turbine")
    task2 = Task("acc_aero_gas_turbine", "acc_aero_gas_turbine", "acc_aero_gas_turbine")
    task3 = Task("acc_industrial_gas_turbine", "acc_industrial_gas_turbine", "acc_industrial_gas_turbine")
    task4 = Task("acc_pump", "acc_pump", "acc_pump")
    task5 = Task("acc_compressor", "acc_compressor", "acc_compressor")
    task6 = Task("acc_reciprocating_internal_combustion_engine", "acc_reciprocating_internal_combustion_engine", "acc_reciprocating_internal_combustion_engine")
    task7 = Task("acc_electric_generator", "acc_electric_generator", "acc_electric_generator")
    task8 = Task("acc_fan", "acc_fan", "acc_fan")
    task9 = Task("acc_power_transformer", "acc_power_transformer", "acc_power_transformer")

class UncertaintyTasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("fmsr_ss", "fmsr_ss", "fmsr_ss")
    task1 = Task("fmsr_coverage_rate", "fmsr_coverage_rate", "fmsr_coverage_rate")
    task2 = Task("fmsr_acc", "fmsr_acc", "fmsr_acc")
    task3 = Task("fmsr_uacc", "fmsr_uacc", "fmsr_uacc")

# {
#   "acc_overall": {
#     "acc": 0.38732658417697785
#   },
#   "acc_sel": {
#     "acc_sel": 0.40638297872340423
#   },
#   "acc_el": {
#     "acc_el": 0.4954128440366973
#   },
#   "acc_perturb": {
#     "perturb_score": 0.2819647544056993
#   },
#   "score_consistency": {
#     "consist_score": 0.16422947131608548
#   },
#   "uncertainty": {
#     "uncertainty_score": 0
#   },
#   "acc_electric_motor": {
#     "acc_electric_motor": 0.41025641025641024
#   },
#   "acc_steam_turbine": {
#     "acc_steam_turbine": 0.30409356725146197
#   },
#   "acc_aero_gas_turbine": {
#     "acc_aero_gas_turbine": 0.3541666666666667
#   },
#   "acc_industrial_gas_turbine": {
#     "acc_industrial_gas_turbine": 0.45
#   },
#   "acc_pump": {
#     "acc_pump": 0.39473684210526316
#   },
#   "acc_compressor": {
#     "acc_compressor": 0.35
#   },
#   "acc_reciprocating_internal_combustion_engine": {
#     "acc_reciprocating_internal_combustion_engine": 0.47619047619047616
#   },
#   "acc_electric_generator": {
#     "acc_electric_generator": 0.42735042735042733
#   },
#   "acc_fan": {
#     "acc_fan": 0.445
#   },
#   "acc_power_transformer": {
#     "acc_power_transformer": 0.3161764705882353
#   }
# }

NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------


# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">FailureSensorIQ leaderboard</h1>"""

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
**FailureSensorIQ** is a quiz designed for AI models to test how well they understand when and why industrial machines might fail. Instead of asking general trivia, it asks real-world questions like:

> “If this machine experiences this failure mode, which sensor would detect it first?”

Or the reverse:

> “If this sensor shows a strange reading, what might be going wrong?”
"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = '''
## Prompt Format
The prompt will follow the following style. Models' output are expected to follow this format.
```
Select the correct option(s) from the following options given the question. To solve the problem, follow the Let's think Step by Step reasoning strategy.
Question: For electric motor, if a failure event rotor windings fault occurs, which sensor out of the choices is the most relevant sensor regarding the occurrence of the failure event?
Options:
A partial discharge
B resistance
C oil debris
D current
E voltage
{"step_1": "<Step 1 of your reasoning>", "step_2": "<Step 2 of your reasoning>", "step_n": "<Step n of your reasoning>", "answer": <the list of selected option, e.g., ["A", "B", "C", "D", "E"]>}
Your output in a single line:
```
## Expected Output Format
```
{"step_1": "<Step 1 of your reasoning>", "step_2": "<Step 2 of your reasoning>", "step_n": "<Step n of your reasoning>", "answer": <the list of selected option, e.g., ["A", "B", "C", "D", "E"]>}
```
## Reproducibility
To reproduce our results, here is the commands you can run:

'''
print(LLM_BENCHMARKS_TEXT)

EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model

### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.

Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!

### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!

### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗

### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card

## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@article{constantinides2025failuresensoriq,
  title={FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes},
  author={Constantinides, Christodoulos and Patel, Dhaval and Lin, Shuxin and Guerrero, Claudio and Patil, Sunil Dagajirao and Kalagnanam, Jayant},
  journal={arXiv preprint arXiv:2506.03278},
  year={2025}
}
"""