File size: 11,527 Bytes
c335116 1170452 c335116 1170452 1404ca2 1170452 c335116 1170452 c335116 bc1fb95 1404ca2 bc1fb95 c335116 1170452 bc1fb95 c335116 1170452 bc1fb95 2dde5f4 bc1fb95 2dde5f4 bc1fb95 1170452 bc1fb95 1170452 c335116 1c98763 bc1fb95 c335116 1170452 bc1fb95 2dde5f4 bc1fb95 2dde5f4 bc1fb95 c335116 bc1fb95 c335116 bc1fb95 1170452 bc1fb95 1170452 c335116 1170452 c335116 1170452 c335116 1170452 c335116 1170452 c335116 1170452 c335116 1170452 c335116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import io
import json
import base64
from uuid import uuid4
from PIL import Image as PILImage
from typing import List, Dict, Tuple
os.environ["DEEPFACE_HOME"] = "."
import pyzipper
import numpy as np
import gradio as gr
from voyager import Index, Space, StorageDataType
from deepface import DeepFace
THRESHOLD = 0.5
index_arc = Index(Space.Cosine, num_dimensions=512,storage_data_type=StorageDataType.E4M3)
index_facenet = Index(Space.Cosine, num_dimensions=512,storage_data_type=StorageDataType.E4M3)
# Load the indices using file handles
with open('face_arc.voy', 'rb') as f:
index_arc = index_arc.load(f)
with open('face_facenet.voy', 'rb') as f:
index_facenet = index_facenet.load(f)
FACES = json.load(open("faces.json"))
with pyzipper.AESZipFile('persons.zip') as zf:
password = os.getenv("VISAGE_KEY","").encode('ascii')
zf.setpassword(password)
PERFORMER_DB = json.loads(zf.read('performers.json'))
class EnsembleFaceRecognition:
def __init__(self, model_weights: Dict[str, float] = None):
"""
Initialize ensemble face recognition system.
Parameters:
model_weights: Dictionary mapping model names to their weights
If None, all models are weighted equally
"""
self.model_weights = model_weights or {}
self.boost_factor = 1.8
def normalize_distances(self, distances: np.ndarray) -> np.ndarray:
"""Normalize distances to [0,1] range within each model's predictions"""
min_dist = np.min(distances)
max_dist = np.max(distances)
if max_dist == min_dist:
return np.zeros_like(distances)
return (distances - min_dist) / (max_dist - min_dist)
def compute_model_confidence(self,
distances: np.ndarray,
temperature: float = 0.1) -> np.ndarray:
"""Convert distances to confidence scores for a single model"""
normalized_distances = self.normalize_distances(distances)
exp_distances = np.exp(-normalized_distances / temperature)
return exp_distances / np.sum(exp_distances)
def get_face_embeddings(self, image: np.ndarray) -> Dict[str, np.ndarray]:
"""Get face embeddings for each model"""
return {
'facenet': DeepFace.represent(img_path=image, detector_backend='skip', model_name='Facenet512', normalization='Facenet2018',align=True)[0]['embedding'],
'arc': DeepFace.represent(img_path=image, detector_backend='skip', model_name='ArcFace',align=True)[0]['embedding']}
def ensemble_prediction(self,
model_predictions: Dict[str, Tuple[List[str], List[float]]],
temperature: float = 0.1,
min_agreement: float = 0.5) -> List[Tuple[str, float]]:
"""
Combine predictions from multiple models.
Parameters:
model_predictions: Dictionary mapping model names to their (distances, names) predictions
temperature: Temperature parameter for softmax scaling
min_agreement: Minimum agreement threshold between models
Returns:
final_predictions: List of (name, confidence) tuples
"""
# Initialize vote counting
vote_dict = {}
confidence_dict = {}
# Process each model's predictions
for model_name, (names, distances) in model_predictions.items():
# Get model weight (default to 1.0 if not specified)
model_weight = self.model_weights.get(model_name, 1.0)
# Compute confidence scores for this model
confidences = self.compute_model_confidence(np.array(distances), temperature)
# Add weighted votes for top prediction
top_name = names[0]
top_confidence = confidences[0]
vote_dict[top_name] = vote_dict.get(top_name, 0) + model_weight
confidence_dict[top_name] = confidence_dict.get(top_name, [])
confidence_dict[top_name].append(top_confidence)
# Normalize votes
total_weight = sum(self.model_weights.values()) if self.model_weights else len(model_predictions)
# Compute final results with minimum agreement check
final_results = []
for name, votes in vote_dict.items():
normalized_votes = votes / total_weight
# Only include results that meet minimum agreement threshold
if normalized_votes >= min_agreement:
avg_confidence = np.mean(confidence_dict[name])
final_score = normalized_votes * avg_confidence * self.boost_factor
final_score = min(final_score, 1.0) # Cap at 1.0
final_results.append((name, final_score))
# Sort by final score
final_results.sort(key=lambda x: x[1], reverse=True)
return final_results
## Prediction functions
def get_performer_info(stash, confidence):
"""Get performer information from the database"""
performer = PERFORMER_DB.get(stash, [])
if not performer:
return None
confidence = int(confidence * 100)
return {
'id': stash,
"name": performer['name'],
"confidence": confidence,
'image': performer['image'],
'country': performer['country'],
'hits': 1,
'distance': confidence,
'performer_url': f"https://stashdb.org/performers/{stash}"
}
def get_face_predictions(face, ensemble, results):
"""Get predictions for a single face"""
# Get embeddings for original and flipped images
embeddings_orig = ensemble.get_face_embeddings(face)
embeddings_flip = ensemble.get_face_embeddings(np.fliplr(face))
# Average the embeddings
facenet = np.mean([embeddings_orig['facenet'], embeddings_flip['facenet']], axis=0)
arc = np.mean([embeddings_orig['arc'], embeddings_flip['arc']], axis=0)
# Get predictions from both models
model_predictions = {
'facenet': index_facenet.query(facenet, max(results, 50)),
'arc': index_arc.query(arc, max(results, 50)),
}
return ensemble.ensemble_prediction(model_predictions)
def image_search_performer(image, threshold=THRESHOLD, results=3):
"""Search for a performer in an image"""
image_array = np.array(image)
ensemble = EnsembleFaceRecognition({"facenet": 1.0, "arc": 1.0})
try:
faces = DeepFace.extract_faces(image_array, detector_backend="yolov8")
except ValueError:
raise gr.Error("No faces found")
predictions = get_face_predictions(faces[0]['face'], ensemble, results)
response = []
for name, confidence in predictions:
performer_info = get_performer_info(FACES[name], confidence)
if performer_info:
response.append(performer_info)
return response
def image_search_performers(image, threshold=THRESHOLD, results=3):
"""Search for multiple performers in an image"""
image_array = np.array(image)
ensemble = EnsembleFaceRecognition({"facenet": 1.0, "arc": 1.0})
try:
faces = DeepFace.extract_faces(image_array, detector_backend="yolov8")
except ValueError:
raise gr.Error("No faces found")
response = []
for face in faces:
predictions = get_face_predictions(face['face'], ensemble, results)
# Crop and encode face image
area = face['facial_area']
cimage = image.crop((area['x'], area['y'], area['x'] + area['w'], area['y'] + area['h']))
buf = io.BytesIO()
cimage.save(buf, format='JPEG')
im_b64 = base64.b64encode(buf.getvalue()).decode('ascii')
# Get performer information
performers = []
for name, confidence in predictions:
performer_info = get_performer_info(FACES[name], confidence)
if performer_info:
performers.append(performer_info)
response.append({
'image': im_b64,
'confidence': face['confidence'],
'performers': performers
})
return response
def vector_search_performer(vector_json, threshold=20.0, results=3):
return {'status': 'not implemented'}
def find_faces_in_sprite(image, vtt):
vtt = base64.b64decode(vtt.replace("data:text/vtt;base64,", ""))
sprite = PILImage.fromarray(image)
results = []
for i, (left, top, right, bottom, time_seconds) in enumerate(getVTToffsets(vtt)):
cut_frame = sprite.crop((left, top, left + right, top + bottom))
faces = DeepFace.extract_faces(np.asarray(cut_frame), detector_backend="mediapipe", enforce_detection=False, align=False)
faces = [face for face in faces if face['confidence'] > 0.6]
if faces:
size = faces[0]['facial_area']['w'] * faces[0]['facial_area']['h']
data = {'id': str(uuid4()), "offset": (left, top, right, bottom), "frame": i, "time": time_seconds, 'size': size}
results.append(data)
return results
def getVTToffsets(vtt):
time_seconds = 0
left = top = right = bottom = None
for line in vtt.decode("utf-8").split("\n"):
line = line.strip()
if "-->" in line:
# grab the start time
# 00:00:00.000 --> 00:00:41.000
start = line.split("-->")[0].strip().split(":")
# convert to seconds
time_seconds = (
int(start[0]) * 3600
+ int(start[1]) * 60
+ float(start[2])
)
left = top = right = bottom = None
elif "xywh=" in line:
left, top, right, bottom = line.split("xywh=")[-1].split(",")
left, top, right, bottom = (
int(left),
int(top),
int(right),
int(bottom),
)
else:
continue
if not left:
continue
yield left, top, right, bottom, time_seconds
image_search = gr.Interface(
fn=image_search_performer,
inputs=[
gr.Image(),
gr.Slider(label="threshold",minimum=0.0, maximum=1.0, value=THRESHOLD),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
title="Who is in the photo?",
description="Upload an image of a person and we'll tell you who it is.",
)
image_search_multiple = gr.Interface(
fn=image_search_performers,
inputs=[
gr.Image(type="pil"),
gr.Slider(label="threshold",minimum=0.0, maximum=1.0, value=THRESHOLD),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
title="Who is in the photo?",
description="Upload an image of a person(s) and we'll tell you who it is.",
)
vector_search = gr.Interface(
fn=vector_search_performer,
inputs=[
gr.Textbox(),
gr.Slider(label="threshold",minimum=0.0, maximum=1.0, value=THRESHOLD),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
description="deprecated",
)
faces_in_sprite = gr.Interface(
fn=find_faces_in_sprite,
inputs=[
gr.Image(),
gr.Textbox(label="VTT file")
],
outputs=gr.JSON(label=""),
)
gr.TabbedInterface([image_search, image_search_multiple, vector_search, faces_in_sprite]).queue().launch(server_name="0.0.0.0")
|