File size: 19,969 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import train
import os
import time
import csv
import sys
import warnings
import random
import numpy as np
import time
import pprint
import pickle

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from loguru import logger
import smplx
import librosa

from utils import config, logger_tools, other_tools, metric
from utils import rotation_conversions as rc
from dataloaders import data_tools
from optimizers.optim_factory import create_optimizer
from optimizers.scheduler_factory import create_scheduler
from optimizers.loss_factory import get_loss_func
from scipy.spatial.transform import Rotation


class CustomTrainer(train.BaseTrainer):
    def __init__(self, args):
        super().__init__(args)
        self.joints = self.train_data.joints
        self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'div_reg', "kl"], [False,True,True, False, False, False, False, False, False, False, False, False, False])
        if not self.args.rot6d: #"rot6d" not in args.pose_rep:
            logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
        self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
        self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)

    def _load_data(self, dict_data):
        tar_pose = dict_data["pose"].to(self.rank)
        tar_trans = dict_data["trans"].to(self.rank)
        tar_exps = dict_data["facial"].to(self.rank)
        tar_beta = dict_data["beta"].to(self.rank)
        tar_id = dict_data["id"].to(self.rank).long()
        tar_word = dict_data["word"].to(self.rank)
        in_audio = dict_data["audio"].to(self.rank)
        in_emo = dict_data["emo"].to(self.rank) 
        #in_sem = dict_data["sem"].to(self.rank) 
        bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
        tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
        tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
        in_pre_pose_cat = torch.cat([tar_pose[:, 0:self.args.pre_frames], tar_trans[:, :self.args.pre_frames]], dim=2).to(self.rank)

        in_pre_pose = tar_pose.new_zeros((bs, n, j*6+1+3)).to(self.rank)
        in_pre_pose[:, 0:self.args.pre_frames, :-1] = in_pre_pose_cat[:, 0:self.args.pre_frames]
        in_pre_pose[:, 0:self.args.pre_frames, -1] = 1
        return {
            "tar_pose": tar_pose,
            "in_audio": in_audio,
            "in_motion": in_pre_pose,
            "tar_trans": tar_trans,
            "tar_exps": tar_exps,
            "tar_beta": tar_beta,
            "tar_word": tar_word,
            'tar_id': tar_id,
            'in_emo': in_emo,
            #'in_sem': in_sem,
        }
    
    def _d_training(self, loaded_data):
        bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints 
        net_out  = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
        rec_pose = net_out["rec_pose"][:, :, :j*6]
        # rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
        
        rec_pose = rec_pose.reshape(bs, n, j, 6)
        rec_pose = rc.rotation_6d_to_matrix(rec_pose)
        rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
        tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))
        tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
        out_d_fake = self.d_model(rec_pose)
        out_d_real = self.d_model(tar_pose)
        
        d_loss_adv = torch.sum(-torch.mean(torch.log(out_d_real + 1e-8) + torch.log(1 - out_d_fake + 1e-8)))
        self.tracker.update_meter("dis", "train", d_loss_adv.item())
        return d_loss_adv
    
    def _g_training(self, loaded_data, use_adv, mode="train"):
        bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints 
        net_out  = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
        rec_pose = net_out["rec_pose"][:, :, :j*6]
        rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
        # print(rec_pose.shape, bs, n, j, loaded_data['in_audio'].shape, loaded_data["in_motion"].shape)
        rec_pose = rec_pose.reshape(bs, n, j, 6)
        rec_pose = rc.rotation_6d_to_matrix(rec_pose)
        tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))

        rec_loss = self.rec_loss(tar_pose, rec_pose)
        rec_loss *= self.args.rec_weight
        self.tracker.update_meter("rec", mode, rec_loss.item())
        # rec_loss_vel = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1])
        # self.tracker.update_meter("vel", mode, rec_loss_vel.item())
        # rec_loss_acc = self.vel_loss(rec_pose[:, 2:] - 2*rec_pose[:, 1:-1] + rec_pose[:, :-2], tar_pose[:, 2:] - 2*tar_pose[:, 1:-1] + tar_pose[:, :-2])
        # self.tracker.update_meter("acc", mode, rec_loss_acc.item())
        
        rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
        tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
        if self.args.pose_dims < 330 and mode != "train":
            rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs, n, j, 6))
            rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs, n, j*3)
            rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
            rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, 55, 3))
            rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, 55*6)

            tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
            tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs, n, j*3)
            tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
            tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
            tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, 55*6)
        if use_adv and mode == 'train':
            out_d_fake = self.d_model(rec_pose)
            d_loss_adv = -torch.mean(torch.log(out_d_fake + 1e-8))
            self.tracker.update_meter("gen", mode, d_loss_adv.item())
        else:
            d_loss_adv = 0

        if self.args.train_trans:
            trans_loss = self.vel_loss(rec_trans, loaded_data["tar_trans"])
            trans_loss *= self.args.rec_weight
            self.tracker.update_meter("trans", mode, trans_loss.item())
        else:
            trans_loss = 0
        # trans_loss_vel = self.vel_loss(rec_trans[:, 1:] - rec_trans[:, :-1], loaded_data["tar_trans"][:, 1:] - loaded_data["tar_trans"][:, :-1])
        # self.tracker.update_meter("transv", mode, trans_loss_vel.item())
        # trans_loss_acc = self.vel_loss(rec_trans[:, 2:] - 2*rec_trans[:, 1:-1] + rec_trans[:, :-2], loaded_data["tar_trans"][:, 2:] - 2*loaded_data["tar_trans"][:, 1:-1] + loaded_data["tar_trans"][:, :-2])
        # self.tracker.update_meter("transa", mode, trans_loss_acc.item())

        if mode == 'train':
            return d_loss_adv + rec_loss + trans_loss # + rec_loss_vel + rec_loss_acc + trans_loss_vel + trans_loss_acc
        elif mode == 'val':
            return {
                'rec_pose': rec_pose,
                'rec_trans': rec_trans,
                'tar_pose': tar_pose,
            }
        else:
            return {
                'rec_pose': rec_pose,
                'rec_trans': rec_trans,
                'tar_pose': tar_pose,
                'tar_exps': loaded_data["tar_exps"],
                'tar_beta': loaded_data["tar_beta"],
                'tar_trans': loaded_data["tar_trans"],
            }
        
    def train(self, epoch):
        use_adv = bool(epoch>=self.args.no_adv_epoch)
        self.model.train()
        self.d_model.train()
        self.tracker.reset()
        t_start = time.time()
        for its, batch_data in enumerate(self.train_loader):
            loaded_data = self._load_data(batch_data)
            t_data = time.time() - t_start
    
            if use_adv:
                d_loss_final = 0
                self.opt_d.zero_grad()
                d_loss_adv = self._d_training(loaded_data)
                d_loss_final += d_loss_adv
                d_loss_final.backward()
                self.opt_d.step() 
    
            self.opt.zero_grad()
            g_loss_final = 0
            g_loss_final += self._g_training(loaded_data, use_adv, 'train')
            g_loss_final.backward()
            self.opt.step()

            mem_cost = torch.cuda.memory_cached() / 1E9
            lr_g = self.opt.param_groups[0]['lr']
            lr_d = self.opt_d.param_groups[0]['lr']
            t_train = time.time() - t_start - t_data
            t_start = time.time()
            if its % self.args.log_period == 0:
                self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g, lr_d=lr_d)   
            if self.args.debug:
                if its == 1: break
        self.opt_s.step(epoch)
        self.opt_d_s.step(epoch)        
    
    
    def val(self, epoch):
        self.model.eval()
        self.d_model.eval()
        with torch.no_grad():
            for its, batch_data in enumerate(self.train_loader):
                loaded_data = self._load_data(batch_data)    
                net_out = self._g_training(loaded_data, False, 'val')
                tar_pose = net_out['tar_pose']
                rec_pose = net_out['rec_pose']
                n = tar_pose.shape[1]
                if (30/self.args.pose_fps) != 1:
                    assert 30%self.args.pose_fps == 0
                    n *= int(30/self.args.pose_fps)
                    tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                n = tar_pose.shape[1]
                remain = n%self.args.vae_test_len
                tar_pose = tar_pose[:, :n-remain, :]
                rec_pose = rec_pose[:, :n-remain, :]
                latent_out = self.eval_copy.map2latent(rec_pose).reshape(-1, self.args.vae_length).cpu().numpy()
                latent_ori = self.eval_copy.map2latent(tar_pose).reshape(-1, self.args.vae_length).cpu().numpy()
                if its == 0:
                    latent_out_motion_all = latent_out
                    latent_ori_all = latent_ori
                else:
                    latent_out_motion_all = np.concatenate([latent_out_motion_all, latent_out], axis=0)                 
                    latent_ori_all = np.concatenate([latent_ori_all, latent_ori], axis=0)
                if self.args.debug:
                    if its == 1: break
        fid_motion = data_tools.FIDCalculator.frechet_distance(latent_out_motion_all, latent_ori_all)
        self.tracker.update_meter("fid", "val", fid_motion)
        self.val_recording(epoch)  
        
    def test(self, epoch):
        results_save_path = self.checkpoint_path + f"/{epoch}/"
        if os.path.exists(results_save_path): 
            return 0
        os.makedirs(results_save_path)
        start_time = time.time()
        total_length = 0
        test_seq_list = self.test_data.selected_file
        align = 0 
        latent_out = []
        latent_ori = []
        self.model.eval()
        self.smplx.eval()
        self.eval_copy.eval()
        with torch.no_grad():
            for its, batch_data in enumerate(self.test_loader):
                loaded_data = self._load_data(batch_data)    
                net_out = self._g_training(loaded_data, False, 'test')
                tar_pose = net_out['tar_pose']
                rec_pose = net_out['rec_pose']
                tar_exps = net_out['tar_exps']
                tar_beta = net_out['tar_beta']
                rec_trans = net_out['rec_trans']
                tar_trans = net_out['tar_trans']
                bs, n, j = tar_pose.shape[0], tar_pose.shape[1], 55
                if (30/self.args.pose_fps) != 1:
                    assert 30%self.args.pose_fps == 0
                    n *= int(30/self.args.pose_fps)
                    tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    tar_beta = torch.nn.functional.interpolate(tar_beta.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    tar_exps = torch.nn.functional.interpolate(tar_exps.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1) 
                    tar_trans = torch.nn.functional.interpolate(tar_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                    rec_trans = torch.nn.functional.interpolate(rec_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
                
                # print(rec_pose.shape, tar_pose.shape)
                # rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
                # rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
                # tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
                # tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
                remain = n%self.args.vae_test_len
                latent_out.append(self.eval_copy.map2latent(rec_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) # bs * n/8 * 240
                latent_ori.append(self.eval_copy.map2latent(tar_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy())
                
                rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
                rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
                tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
                tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
                
                vertices_rec = self.smplx(
                        betas=tar_beta.reshape(bs*n, 300), 
                        transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3), 
                        expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
                        jaw_pose=rec_pose[:, 66:69], 
                        global_orient=rec_pose[:,:3], 
                        body_pose=rec_pose[:,3:21*3+3], 
                        left_hand_pose=rec_pose[:,25*3:40*3], 
                        right_hand_pose=rec_pose[:,40*3:55*3], 
                        return_joints=True, 
                        leye_pose=rec_pose[:, 69:72], 
                        reye_pose=rec_pose[:, 72:75],
                    )
                # vertices_tar = self.smplx(
                #         betas=tar_beta.reshape(bs*n, 300), 
                #         transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3), 
                #         expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
                #         jaw_pose=tar_pose[:, 66:69], 
                #         global_orient=tar_pose[:,:3], 
                #         body_pose=tar_pose[:,3:21*3+3], 
                #         left_hand_pose=tar_pose[:,25*3:40*3], 
                #         right_hand_pose=tar_pose[:,40*3:55*3], 
                #         return_joints=True, 
                #         leye_pose=tar_pose[:, 69:72], 
                #         reye_pose=tar_pose[:, 72:75],
                #     )
                joints_rec = vertices_rec["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
                # joints_tar = vertices_tar["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
                _ = self.l1_calculator.run(joints_rec)
                if self.alignmenter is not None:
                    in_audio_eval, sr = librosa.load(self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav")
                    in_audio_eval = librosa.resample(in_audio_eval, orig_sr=sr, target_sr=self.args.audio_sr)
                    a_offset = int(self.align_mask * (self.args.audio_sr / self.args.pose_fps))
                    onset_bt = self.alignmenter.load_audio(in_audio_eval[:int(self.args.audio_sr / self.args.pose_fps*n)], a_offset, len(in_audio_eval)-a_offset, True)
                    beat_vel = self.alignmenter.load_pose(joints_rec, self.align_mask, n-self.align_mask, 30, True)
                    # print(beat_vel)
                    align += (self.alignmenter.calculate_align(onset_bt, beat_vel, 30) * (n-2*self.align_mask))
               
                tar_pose_axis_np = tar_pose.detach().cpu().numpy()
                rec_pose_axis_np = rec_pose.detach().cpu().numpy()
                rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
                rec_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
                tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
                tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
                gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
                if not self.args.train_trans:
                    tar_trans_np = tar_trans_np - tar_trans_np
                    rec_trans_np = rec_trans_np - rec_trans_np
                np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
                    betas=gt_npz["betas"],
                    poses=tar_pose_axis_np,
                    expressions=tar_exp_np,
                    trans=tar_trans_np,
                    model='smplx2020',
                    gender='neutral',
                    mocap_frame_rate = 30 ,
                )
                np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
                    betas=gt_npz["betas"],
                    poses=rec_pose_axis_np,
                    expressions=rec_exp_np,
                    trans=rec_trans_np,
                    model='smplx2020',
                    gender='neutral',
                    mocap_frame_rate = 30,
                )
                total_length += n

        latent_out_all = np.concatenate(latent_out, axis=0)
        latent_ori_all = np.concatenate(latent_ori, axis=0)
        fid = data_tools.FIDCalculator.frechet_distance(latent_out_all, latent_ori_all)
        logger.info(f"fid score: {fid}")
        self.test_recording("fid", fid, epoch) 
        
        align_avg = align/(total_length-2*len(self.test_loader)*self.align_mask)
        logger.info(f"align score: {align_avg}")
        self.test_recording("bc", align_avg, epoch)

        l1div = self.l1_calculator.avg()
        logger.info(f"l1div score: {l1div}")
        self.test_recording("l1div", l1div, epoch)

        # data_tools.result2target_vis(self.args.pose_version, results_save_path, results_save_path, self.test_demo, False)
        end_time = time.time() - start_time
        logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")