File size: 19,969 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import train
import os
import time
import csv
import sys
import warnings
import random
import numpy as np
import time
import pprint
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from loguru import logger
import smplx
import librosa
from utils import config, logger_tools, other_tools, metric
from utils import rotation_conversions as rc
from dataloaders import data_tools
from optimizers.optim_factory import create_optimizer
from optimizers.scheduler_factory import create_scheduler
from optimizers.loss_factory import get_loss_func
from scipy.spatial.transform import Rotation
class CustomTrainer(train.BaseTrainer):
def __init__(self, args):
super().__init__(args)
self.joints = self.train_data.joints
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'div_reg', "kl"], [False,True,True, False, False, False, False, False, False, False, False, False, False])
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
def _load_data(self, dict_data):
tar_pose = dict_data["pose"].to(self.rank)
tar_trans = dict_data["trans"].to(self.rank)
tar_exps = dict_data["facial"].to(self.rank)
tar_beta = dict_data["beta"].to(self.rank)
tar_id = dict_data["id"].to(self.rank).long()
tar_word = dict_data["word"].to(self.rank)
in_audio = dict_data["audio"].to(self.rank)
in_emo = dict_data["emo"].to(self.rank)
#in_sem = dict_data["sem"].to(self.rank)
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
in_pre_pose_cat = torch.cat([tar_pose[:, 0:self.args.pre_frames], tar_trans[:, :self.args.pre_frames]], dim=2).to(self.rank)
in_pre_pose = tar_pose.new_zeros((bs, n, j*6+1+3)).to(self.rank)
in_pre_pose[:, 0:self.args.pre_frames, :-1] = in_pre_pose_cat[:, 0:self.args.pre_frames]
in_pre_pose[:, 0:self.args.pre_frames, -1] = 1
return {
"tar_pose": tar_pose,
"in_audio": in_audio,
"in_motion": in_pre_pose,
"tar_trans": tar_trans,
"tar_exps": tar_exps,
"tar_beta": tar_beta,
"tar_word": tar_word,
'tar_id': tar_id,
'in_emo': in_emo,
#'in_sem': in_sem,
}
def _d_training(self, loaded_data):
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
net_out = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
rec_pose = net_out["rec_pose"][:, :, :j*6]
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
rec_pose = rec_pose.reshape(bs, n, j, 6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose)
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
out_d_fake = self.d_model(rec_pose)
out_d_real = self.d_model(tar_pose)
d_loss_adv = torch.sum(-torch.mean(torch.log(out_d_real + 1e-8) + torch.log(1 - out_d_fake + 1e-8)))
self.tracker.update_meter("dis", "train", d_loss_adv.item())
return d_loss_adv
def _g_training(self, loaded_data, use_adv, mode="train"):
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
net_out = self.model(in_audio = loaded_data['in_audio'], pre_seq = loaded_data["in_motion"], in_text=loaded_data["tar_word"], in_id=loaded_data["tar_id"], in_emo=loaded_data["in_emo"], in_facial = loaded_data["tar_exps"])
rec_pose = net_out["rec_pose"][:, :, :j*6]
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
# print(rec_pose.shape, bs, n, j, loaded_data['in_audio'].shape, loaded_data["in_motion"].shape)
rec_pose = rec_pose.reshape(bs, n, j, 6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose)
tar_pose = rc.rotation_6d_to_matrix(loaded_data["tar_pose"].reshape(bs, n, j, 6))
rec_loss = self.rec_loss(tar_pose, rec_pose)
rec_loss *= self.args.rec_weight
self.tracker.update_meter("rec", mode, rec_loss.item())
# rec_loss_vel = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1])
# self.tracker.update_meter("vel", mode, rec_loss_vel.item())
# rec_loss_acc = self.vel_loss(rec_pose[:, 2:] - 2*rec_pose[:, 1:-1] + rec_pose[:, :-2], tar_pose[:, 2:] - 2*tar_pose[:, 1:-1] + tar_pose[:, :-2])
# self.tracker.update_meter("acc", mode, rec_loss_acc.item())
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
if self.args.pose_dims < 330 and mode != "train":
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs, n, j, 6))
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs, n, j*3)
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, 55, 3))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, 55*6)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs, n, j*3)
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, 55*6)
if use_adv and mode == 'train':
out_d_fake = self.d_model(rec_pose)
d_loss_adv = -torch.mean(torch.log(out_d_fake + 1e-8))
self.tracker.update_meter("gen", mode, d_loss_adv.item())
else:
d_loss_adv = 0
if self.args.train_trans:
trans_loss = self.vel_loss(rec_trans, loaded_data["tar_trans"])
trans_loss *= self.args.rec_weight
self.tracker.update_meter("trans", mode, trans_loss.item())
else:
trans_loss = 0
# trans_loss_vel = self.vel_loss(rec_trans[:, 1:] - rec_trans[:, :-1], loaded_data["tar_trans"][:, 1:] - loaded_data["tar_trans"][:, :-1])
# self.tracker.update_meter("transv", mode, trans_loss_vel.item())
# trans_loss_acc = self.vel_loss(rec_trans[:, 2:] - 2*rec_trans[:, 1:-1] + rec_trans[:, :-2], loaded_data["tar_trans"][:, 2:] - 2*loaded_data["tar_trans"][:, 1:-1] + loaded_data["tar_trans"][:, :-2])
# self.tracker.update_meter("transa", mode, trans_loss_acc.item())
if mode == 'train':
return d_loss_adv + rec_loss + trans_loss # + rec_loss_vel + rec_loss_acc + trans_loss_vel + trans_loss_acc
elif mode == 'val':
return {
'rec_pose': rec_pose,
'rec_trans': rec_trans,
'tar_pose': tar_pose,
}
else:
return {
'rec_pose': rec_pose,
'rec_trans': rec_trans,
'tar_pose': tar_pose,
'tar_exps': loaded_data["tar_exps"],
'tar_beta': loaded_data["tar_beta"],
'tar_trans': loaded_data["tar_trans"],
}
def train(self, epoch):
use_adv = bool(epoch>=self.args.no_adv_epoch)
self.model.train()
self.d_model.train()
self.tracker.reset()
t_start = time.time()
for its, batch_data in enumerate(self.train_loader):
loaded_data = self._load_data(batch_data)
t_data = time.time() - t_start
if use_adv:
d_loss_final = 0
self.opt_d.zero_grad()
d_loss_adv = self._d_training(loaded_data)
d_loss_final += d_loss_adv
d_loss_final.backward()
self.opt_d.step()
self.opt.zero_grad()
g_loss_final = 0
g_loss_final += self._g_training(loaded_data, use_adv, 'train')
g_loss_final.backward()
self.opt.step()
mem_cost = torch.cuda.memory_cached() / 1E9
lr_g = self.opt.param_groups[0]['lr']
lr_d = self.opt_d.param_groups[0]['lr']
t_train = time.time() - t_start - t_data
t_start = time.time()
if its % self.args.log_period == 0:
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g, lr_d=lr_d)
if self.args.debug:
if its == 1: break
self.opt_s.step(epoch)
self.opt_d_s.step(epoch)
def val(self, epoch):
self.model.eval()
self.d_model.eval()
with torch.no_grad():
for its, batch_data in enumerate(self.train_loader):
loaded_data = self._load_data(batch_data)
net_out = self._g_training(loaded_data, False, 'val')
tar_pose = net_out['tar_pose']
rec_pose = net_out['rec_pose']
n = tar_pose.shape[1]
if (30/self.args.pose_fps) != 1:
assert 30%self.args.pose_fps == 0
n *= int(30/self.args.pose_fps)
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
n = tar_pose.shape[1]
remain = n%self.args.vae_test_len
tar_pose = tar_pose[:, :n-remain, :]
rec_pose = rec_pose[:, :n-remain, :]
latent_out = self.eval_copy.map2latent(rec_pose).reshape(-1, self.args.vae_length).cpu().numpy()
latent_ori = self.eval_copy.map2latent(tar_pose).reshape(-1, self.args.vae_length).cpu().numpy()
if its == 0:
latent_out_motion_all = latent_out
latent_ori_all = latent_ori
else:
latent_out_motion_all = np.concatenate([latent_out_motion_all, latent_out], axis=0)
latent_ori_all = np.concatenate([latent_ori_all, latent_ori], axis=0)
if self.args.debug:
if its == 1: break
fid_motion = data_tools.FIDCalculator.frechet_distance(latent_out_motion_all, latent_ori_all)
self.tracker.update_meter("fid", "val", fid_motion)
self.val_recording(epoch)
def test(self, epoch):
results_save_path = self.checkpoint_path + f"/{epoch}/"
if os.path.exists(results_save_path):
return 0
os.makedirs(results_save_path)
start_time = time.time()
total_length = 0
test_seq_list = self.test_data.selected_file
align = 0
latent_out = []
latent_ori = []
self.model.eval()
self.smplx.eval()
self.eval_copy.eval()
with torch.no_grad():
for its, batch_data in enumerate(self.test_loader):
loaded_data = self._load_data(batch_data)
net_out = self._g_training(loaded_data, False, 'test')
tar_pose = net_out['tar_pose']
rec_pose = net_out['rec_pose']
tar_exps = net_out['tar_exps']
tar_beta = net_out['tar_beta']
rec_trans = net_out['rec_trans']
tar_trans = net_out['tar_trans']
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], 55
if (30/self.args.pose_fps) != 1:
assert 30%self.args.pose_fps == 0
n *= int(30/self.args.pose_fps)
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
tar_beta = torch.nn.functional.interpolate(tar_beta.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
tar_exps = torch.nn.functional.interpolate(tar_exps.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
tar_trans = torch.nn.functional.interpolate(tar_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
rec_trans = torch.nn.functional.interpolate(rec_trans.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
# print(rec_pose.shape, tar_pose.shape)
# rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
# rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
# tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
remain = n%self.args.vae_test_len
latent_out.append(self.eval_copy.map2latent(rec_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) # bs * n/8 * 240
latent_ori.append(self.eval_copy.map2latent(tar_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy())
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
vertices_rec = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
jaw_pose=rec_pose[:, 66:69],
global_orient=rec_pose[:,:3],
body_pose=rec_pose[:,3:21*3+3],
left_hand_pose=rec_pose[:,25*3:40*3],
right_hand_pose=rec_pose[:,40*3:55*3],
return_joints=True,
leye_pose=rec_pose[:, 69:72],
reye_pose=rec_pose[:, 72:75],
)
# vertices_tar = self.smplx(
# betas=tar_beta.reshape(bs*n, 300),
# transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3),
# expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100),
# jaw_pose=tar_pose[:, 66:69],
# global_orient=tar_pose[:,:3],
# body_pose=tar_pose[:,3:21*3+3],
# left_hand_pose=tar_pose[:,25*3:40*3],
# right_hand_pose=tar_pose[:,40*3:55*3],
# return_joints=True,
# leye_pose=tar_pose[:, 69:72],
# reye_pose=tar_pose[:, 72:75],
# )
joints_rec = vertices_rec["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
# joints_tar = vertices_tar["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3]
_ = self.l1_calculator.run(joints_rec)
if self.alignmenter is not None:
in_audio_eval, sr = librosa.load(self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav")
in_audio_eval = librosa.resample(in_audio_eval, orig_sr=sr, target_sr=self.args.audio_sr)
a_offset = int(self.align_mask * (self.args.audio_sr / self.args.pose_fps))
onset_bt = self.alignmenter.load_audio(in_audio_eval[:int(self.args.audio_sr / self.args.pose_fps*n)], a_offset, len(in_audio_eval)-a_offset, True)
beat_vel = self.alignmenter.load_pose(joints_rec, self.align_mask, n-self.align_mask, 30, True)
# print(beat_vel)
align += (self.alignmenter.calculate_align(onset_bt, beat_vel, 30) * (n-2*self.align_mask))
tar_pose_axis_np = tar_pose.detach().cpu().numpy()
rec_pose_axis_np = rec_pose.detach().cpu().numpy()
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
rec_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) - tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
if not self.args.train_trans:
tar_trans_np = tar_trans_np - tar_trans_np
rec_trans_np = rec_trans_np - rec_trans_np
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=tar_pose_axis_np,
expressions=tar_exp_np,
trans=tar_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30 ,
)
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=rec_pose_axis_np,
expressions=rec_exp_np,
trans=rec_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30,
)
total_length += n
latent_out_all = np.concatenate(latent_out, axis=0)
latent_ori_all = np.concatenate(latent_ori, axis=0)
fid = data_tools.FIDCalculator.frechet_distance(latent_out_all, latent_ori_all)
logger.info(f"fid score: {fid}")
self.test_recording("fid", fid, epoch)
align_avg = align/(total_length-2*len(self.test_loader)*self.align_mask)
logger.info(f"align score: {align_avg}")
self.test_recording("bc", align_avg, epoch)
l1div = self.l1_calculator.avg()
logger.info(f"l1div score: {l1div}")
self.test_recording("l1div", l1div, epoch)
# data_tools.result2target_vis(self.args.pose_version, results_save_path, results_save_path, self.test_demo, False)
end_time = time.time() - start_time
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") |