Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,428 Bytes
c1c0440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from tqdm import tqdm
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from einops import rearrange
from src.utils.train_util import instantiate_from_config
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, DDPMScheduler, UNet2DConditionModel
from .pipeline import RefOnlyNoisedUNet
def scale_latents(latents):
latents = (latents - 0.22) * 0.75
return latents
def unscale_latents(latents):
latents = latents / 0.75 + 0.22
return latents
def scale_image(image):
image = image * 0.5 / 0.8
return image
def unscale_image(image):
image = image / 0.5 * 0.8
return image
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class MVDiffusion(pl.LightningModule):
def __init__(
self,
stable_diffusion_config,
drop_cond_prob=0.1,
):
super(MVDiffusion, self).__init__()
self.drop_cond_prob = drop_cond_prob
self.register_schedule()
# init modules
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
self.pipeline = pipeline
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
if isinstance(self.pipeline.unet, UNet2DConditionModel):
self.pipeline.unet = RefOnlyNoisedUNet(self.pipeline.unet, train_sched, self.pipeline.scheduler)
self.train_scheduler = train_sched # use ddpm scheduler during training
self.unet = pipeline.unet
# validation output buffer
self.validation_step_outputs = []
def register_schedule(self):
self.num_timesteps = 1000
# replace scaled_linear schedule with linear schedule as Zero123++
beta_start = 0.00085
beta_end = 0.0120
betas = torch.linspace(beta_start, beta_end, 1000, dtype=torch.float32)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
self.register_buffer('betas', betas.float())
self.register_buffer('alphas_cumprod', alphas_cumprod.float())
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev.float())
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod).float())
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1 - alphas_cumprod).float())
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod).float())
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1).float())
def on_fit_start(self):
device = torch.device(f'cuda:{self.global_rank}')
self.pipeline.to(device)
if self.global_rank == 0:
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
def prepare_batch_data(self, batch):
# prepare stable diffusion input
cond_imgs = batch['cond_imgs'] # (B, C, H, W)
cond_imgs = cond_imgs.to(self.device)
# random resize the condition image
cond_size = np.random.randint(128, 513)
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
target_imgs = batch['target_imgs'] # (B, 6, C, H, W)
target_imgs = v2.functional.resize(target_imgs, 320, interpolation=3, antialias=True).clamp(0, 1)
target_imgs = rearrange(target_imgs, 'b (x y) c h w -> b c (x h) (y w)', x=3, y=2) # (B, C, 3H, 2W)
target_imgs = target_imgs.to(self.device)
return cond_imgs, target_imgs
@torch.no_grad()
def forward_vision_encoder(self, images):
dtype = next(self.pipeline.vision_encoder.parameters()).dtype
image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])]
image_pt = self.pipeline.feature_extractor_clip(images=image_pil, return_tensors="pt").pixel_values
image_pt = image_pt.to(device=self.device, dtype=dtype)
global_embeds = self.pipeline.vision_encoder(image_pt, output_hidden_states=False).image_embeds
global_embeds = global_embeds.unsqueeze(-2)
encoder_hidden_states = self.pipeline._encode_prompt("", self.device, 1, False)[0]
ramp = global_embeds.new_tensor(self.pipeline.config.ramping_coefficients).unsqueeze(-1)
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
return encoder_hidden_states
@torch.no_grad()
def encode_condition_image(self, images):
dtype = next(self.pipeline.vae.parameters()).dtype
image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])]
image_pt = self.pipeline.feature_extractor_vae(images=image_pil, return_tensors="pt").pixel_values
image_pt = image_pt.to(device=self.device, dtype=dtype)
latents = self.pipeline.vae.encode(image_pt).latent_dist.sample()
return latents
@torch.no_grad()
def encode_target_images(self, images):
dtype = next(self.pipeline.vae.parameters()).dtype
# equals to scaling images to [-1, 1] first and then call scale_image
images = (images - 0.5) / 0.8 # [-0.625, 0.625]
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
latents = scale_latents(latents)
return latents
def forward_unet(self, latents, t, prompt_embeds, cond_latents):
dtype = next(self.pipeline.unet.parameters()).dtype
latents = latents.to(dtype)
prompt_embeds = prompt_embeds.to(dtype)
cond_latents = cond_latents.to(dtype)
cross_attention_kwargs = dict(cond_lat=cond_latents)
pred_noise = self.pipeline.unet(
latents,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
return pred_noise
def predict_start_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def get_v(self, x, noise, t):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def training_step(self, batch, batch_idx):
# get input
cond_imgs, target_imgs = self.prepare_batch_data(batch)
# sample random timestep
B = cond_imgs.shape[0]
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
# classifier-free guidance
if np.random.rand() < self.drop_cond_prob:
prompt_embeds = self.pipeline._encode_prompt([""]*B, self.device, 1, False)
cond_latents = self.encode_condition_image(torch.zeros_like(cond_imgs))
else:
prompt_embeds = self.forward_vision_encoder(cond_imgs)
cond_latents = self.encode_condition_image(cond_imgs)
latents = self.encode_target_images(target_imgs)
noise = torch.randn_like(latents)
latents_noisy = self.train_scheduler.add_noise(latents, noise, t)
v_pred = self.forward_unet(latents_noisy, t, prompt_embeds, cond_latents)
v_target = self.get_v(latents, noise, t)
loss, loss_dict = self.compute_loss(v_pred, v_target)
# logging
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
lr = self.optimizers().param_groups[0]['lr']
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.global_step % 500 == 0 and self.global_rank == 0:
with torch.no_grad():
latents_pred = self.predict_start_from_z_and_v(latents_noisy, t, v_pred)
latents = unscale_latents(latents_pred)
images = unscale_image(self.pipeline.vae.decode(latents / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1]
images = (images * 0.5 + 0.5).clamp(0, 1)
images = torch.cat([target_imgs, images], dim=-2)
grid = make_grid(images, nrow=images.shape[0], normalize=True, value_range=(0, 1))
save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png'))
return loss
def compute_loss(self, noise_pred, noise_gt):
loss = F.mse_loss(noise_pred, noise_gt)
prefix = 'train'
loss_dict = {}
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
@torch.no_grad()
def validation_step(self, batch, batch_idx):
# get input
cond_imgs, target_imgs = self.prepare_batch_data(batch)
images_pil = [v2.functional.to_pil_image(cond_imgs[i]) for i in range(cond_imgs.shape[0])]
outputs = []
for cond_img in images_pil:
latent = self.pipeline(cond_img, num_inference_steps=75, output_type='latent').images
image = unscale_image(self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1]
image = (image * 0.5 + 0.5).clamp(0, 1)
outputs.append(image)
outputs = torch.cat(outputs, dim=0).to(self.device)
images = torch.cat([target_imgs, outputs], dim=-2)
self.validation_step_outputs.append(images)
@torch.no_grad()
def on_validation_epoch_end(self):
images = torch.cat(self.validation_step_outputs, dim=0)
all_images = self.all_gather(images)
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')
if self.global_rank == 0:
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
save_image(grid, os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png'))
self.validation_step_outputs.clear() # free memory
def configure_optimizers(self):
lr = self.learning_rate
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4)
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|