File size: 18,557 Bytes
c1c0440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import cv2
import random
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
from PIL import Image
import json
from torchvision.transforms import v2
import tarfile

import kiui
from core.options import Options
from core.utils import get_rays, grid_distortion, orbit_camera_jitter

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"

class GobjaverseDataset(Dataset):

    def _warn(self):
        raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')

    def __init__(self, opt: Options, training=True):
        
        self.total_epoch = 30
        self.cur_epoch = 0
        self.cur_itrs = 0
        
        # 不切片的比例,原始尺寸可以保持稳定训练
        self.original_scale = 0.1
        self.bata_line_scale = self.original_scale * 0.5
        self.beta_line_ites = 3000
        
        self.opt = opt
        self.training = training

        if opt.over_fit:
            data_list_path=opt.data_debug_list
        else:
            data_list_path=opt.data_list_path

        # TODO: load the list of objects for training
        self.items = []
        with open(data_list_path, 'r') as f:
            data = json.load(f)
            for item in data:
                self.items.append(item)

        # naive split
        if not opt.over_fit:
            if self.training:
                self.items = self.items[:-self.opt.batch_size]
            else:
                self.items = self.items[-self.opt.batch_size:]
        else:
            self.opt.batch_size=len(self.items)
            self.opt.num_workers=0
        
        # default camera intrinsics
        self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
        self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
        self.proj_matrix[0, 0] = 1 / self.tan_half_fov
        self.proj_matrix[1, 1] = 1 / self.tan_half_fov
        self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
        self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
        self.proj_matrix[2, 3] = 1


    def __len__(self):
        return len(self.items)
    
    def get_random_crop(self, batch_masks, minsize):
        n, h, w = batch_masks.shape
        # 初始化一个全为-1的张量,用于存储随机裁剪区域的左上角坐标
        crop_topleft_points = torch.full((n, 4), -1, dtype=torch.int)

        for i, mask in enumerate(batch_masks):
            # 获取非零坐标
            nonzero_coords = torch.nonzero(mask, as_tuple=False)
            if nonzero_coords.size(0) == 0:
                crop_topleft_points[i] = torch.tensor([0, 0, minsize, minsize])
                continue  # 如果没有非零元素,保留初始化时的-1值
            # 计算最小和最大坐标
            min_coords = torch.min(nonzero_coords, dim=0)[0]
            max_coords = torch.max(nonzero_coords, dim=0)[0]
            y_min, x_min = min_coords
            y_max, x_max = max_coords

            # 确保包围盒不小于 minsize * minsize
            y_center = (y_min + y_max) // 2
            x_center = (x_min + x_max) // 2

            y_min = max(0, y_center - (minsize // 2))
            y_max = min(h - 1, y_center + (minsize // 2))
            x_min = max(0, x_center - (minsize // 2))
            x_max = min(w - 1, x_center + (minsize // 2))

            # 如果计算后仍然小于 minsize,则调整
            if (y_max - y_min + 1) < minsize:
                y_min = max(0, y_max - minsize + 1)
                y_max = y_min + minsize - 1
            if (x_max - x_min + 1) < minsize:
                x_min = max(0, x_max - minsize + 1)
                x_max = x_min + minsize - 1

            # 随机选择左上角点
            top_y = torch.randint(y_min, y_max - minsize + 2, (1,)).item()  # 确保裁剪区域在包围盒内
            top_x = torch.randint(x_min, x_max - minsize + 2, (1,)).item()
            
            crop_topleft_points[i] = torch.tensor([top_x, top_y, minsize, minsize])

        return crop_topleft_points

    def __getitem__(self, idx):

        uid = self.items[idx]
        results = {}

        # load num_views images
        images = []
        albedos = []
        normals = []
        depths = []
        masks = []
        cam_poses = []
        
        vid_cnt = 0

        # TODO: choose views, based on your rendering settings
        if self.training:
            if self.opt.is_fix_views:
                if self.opt.mvdream_or_zero123:
                    vids = [0,30,12,36,27,6,33,18][:self.opt.num_input_views] + np.random.permutation(24).tolist()
                else:
                    vids = [0,29,8,33,16,37,2,10,18,28][:self.opt.num_input_views] + np.random.permutation(24).tolist()
            else:
                vids = np.random.permutation(np.arange(0, 36))[:self.opt.num_input_views].tolist() + np.random.permutation(36).tolist()
                
        else:
            #fixed views
            # if self.opt.mvdream_or_zero123:
            #     vids = np.arange(0, 40, 6).tolist() + np.arange(100).tolist()
            # else:
            #     vids = np.arange(0, 40, 4).tolist() + np.arange(100).tolist()
            if self.opt.mvdream_or_zero123:
                vids = [0,30,12,36,27,6,33,18]#np.arange(0, 24, 6).tolist() + np.arange(27, 40, 3).tolist()
            else:
                vids = [0,29,8,33,16,37,2,10,18,28]
        
        for vid in vids:


            #try:
            uid_last = uid.split('/')[1]
            
            if self.opt.rar_data:
                tar_path = os.path.join(self.opt.data_path, f"{uid}.tar")
                image_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.png")
                meta_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.json")
                albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg...
                # mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png")
                nd_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_nd.exr")
                
                with tarfile.open(tar_path, 'r') as tar:
                    with tar.extractfile(image_path) as f:
                        image = np.frombuffer(f.read(), np.uint8)
                    with tar.extractfile(albedo_path) as f:
                        albedo = np.frombuffer(f.read(), np.uint8)
                    with tar.extractfile(meta_path) as f:
                        meta = json.loads(f.read().decode())
                    with tar.extractfile(nd_path) as f:
                        nd = np.frombuffer(f.read(), np.uint8)

                image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
                albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
            else:
                image_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.png")
                meta_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.json")
                # albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg...
                # mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png")
                nd_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_nd.exr")
                
                albedo_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_albedo.png")
                
                # 读取图片并转换为np.uint8类型的数组
                with open(image_path, 'rb') as f:
                    image = np.frombuffer(f.read(), dtype=np.uint8)
                    
                with open(albedo_path, 'rb') as f:
                    albedo = np.frombuffer(f.read(), dtype=np.uint8)

                # 读取JSON文件作为元数据
                with open(meta_path, 'r') as f:
                    meta = json.load(f)

                # 读取图片并转换为np.uint8类型的数组
                with open(nd_path, 'rb') as f:
                    nd = np.frombuffer(f.read(), np.uint8)
                
                image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
                albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255)

            c2w = np.eye(4)
            c2w[:3, 0] = np.array(meta['x'])
            c2w[:3, 1] = np.array(meta['y'])
            c2w[:3, 2] = np.array(meta['z'])
            c2w[:3, 3] = np.array(meta['origin'])
            c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
            
            nd = cv2.imdecode(nd, cv2.IMREAD_UNCHANGED).astype(np.float32) # [512, 512, 4] in [-1, 1]
            normal = nd[..., :3] # in [-1, 1], bg is [0, 0, 1]
            depth = nd[..., 3] # in [0, +?), bg is 0

            # rectify normal directions
            normal = normal[..., ::-1]
            normal[..., 0] *= -1
            normal = torch.from_numpy(normal.astype(np.float32)).nan_to_num_(0) # there are nans in gt normal... 
            depth = torch.from_numpy(depth.astype(np.float32)).nan_to_num_(0)
                
            # except Exception as e:
            #     # print(f'[WARN] dataset {uid} {vid}: {e}')
            #     continue
            
            # blender world + opencv cam --> opengl world & cam
            c2w[1] *= -1
            c2w[[1, 2]] = c2w[[2, 1]]
            c2w[:3, 1:3] *= -1 # invert up and forward direction

            image = image.permute(2, 0, 1) # [4, 512, 512]
            mask = image[3:4] # [1, 512, 512]
            image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
            image = image[[2,1,0]].contiguous() # bgr to rgb
            
            # albdeo
            albedo = albedo.permute(2, 0, 1) # [4, 512, 512]
            albedo = albedo[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
            albedo = albedo[[2,1,0]].contiguous() # bgr to rgb            
            

            normal = normal.permute(2, 0, 1) # [3, 512, 512]
            normal = normal * mask # to [0, 0, 0] bg

            images.append(image)
            albedos.append(albedo)
            normals.append(normal)
            depths.append(depth)
            masks.append(mask.squeeze(0))
            cam_poses.append(c2w)

            vid_cnt += 1
            if vid_cnt == self.opt.num_views:
                break

        if vid_cnt < self.opt.num_views:
            print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
            n = self.opt.num_views - vid_cnt
            images = images + [images[-1]] * n
            normals = normals + [normals[-1]] * n
            depths = depths + [depths[-1]] * n
            masks = masks + [masks[-1]] * n
            cam_poses = cam_poses + [cam_poses[-1]] * n
          
        images = torch.stack(images, dim=0) # [V, 3, H, W]
        albedos = torch.stack(albedos, dim=0) # [V, 3, H, W]
        normals = torch.stack(normals, dim=0) # [V, 3, H, W]
        depths = torch.stack(depths, dim=0) # [V, H, W]
        masks = torch.stack(masks, dim=0) # [V, H, W]
        cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]

        # normalized camera feats as in paper (transform the first pose to a fixed position)
        radius = torch.norm(cam_poses[0, :3, 3])
        cam_poses[:, :3, 3] *= self.opt.cam_radius / radius
        transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
        cam_poses = transform.unsqueeze(0) @ cam_poses  # [V, 4, 4]
        cam_poses_input = cam_poses[:self.opt.num_input_views].clone()

        # 模拟的设定input size,原图512可以模拟输入320
        images = F.interpolate(images, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
        albedos = F.interpolate(albedos, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False)
        
        # increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size) 
        # max_scale_input_size = int(self.opt.output_size + increase_size)
        
        if self.opt.is_crop and self.training:
            #max_scale_input_size=self.opt.input_size
            increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size) 
            increase_size= np.maximum(self.opt.output_size*0.5,increase_size)
            max_scale_input_size = int(self.opt.output_size + increase_size)
        else:
            max_scale_input_size=self.opt.output_size
        
       # random crop, 先随机一个目标尺寸,再从中裁剪一块固定尺寸作为目标
        if max_scale_input_size > self.opt.output_size:
            scaled_input_size = np.random.randint(self.opt.output_size, max_scale_input_size+1)
        else:
            scaled_input_size = self.opt.output_size
            
        target_images = v2.functional.resize(
            images, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1)
        
        target_albedos = v2.functional.resize(
            albedos, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1)
        # target_depths = v2.functional.resize(
        #     target_depths, render_size, interpolation=0, antialias=True)
        target_alphas = v2.functional.resize(
            masks.unsqueeze(1), scaled_input_size, interpolation=0, antialias=True)

        # crop_params = v2.RandomCrop.get_params(
        #     target_images, output_size=(self.opt.output_size, self.opt.output_size))
        
        # 拿 mask的包围盒,并且保证包围盒大于crop patch
        crop_params = self.get_random_crop(target_alphas[:,0], self.opt.output_size )
        
        target_images = torch.stack([v2.functional.crop(target_images[i], *crop_params[i]) for i in range(target_images.shape[0])],0)
        target_albedos = torch.stack([v2.functional.crop(target_albedos[i], *crop_params[i]) for i in range(target_albedos.shape[0])],0)
        target_alphas = torch.stack([v2.functional.crop(target_alphas[i], *crop_params[i]) for i in range(target_alphas.shape[0])],0)
        
        #target gt
        results['images_output']=target_images
        results['albedos_output']=target_albedos
        results['masks_output']=target_alphas
        #bake sdf bata schedule
        #results['t']=torch.tensor(self.cur_epoch/(self.opt.num_epochs*self.bata_line_scale), dtype=torch.float32).clamp(0, 1)
        #results['t']=torch.tensor(self.cur_itrs/self.beta_line_ites, dtype=torch.float32).clamp(0, 1)
    
        # data augmentation condition input image
        images_input = images[:self.opt.num_input_views].clone()
        if self.training:
            # apply random grid distortion to simulate 3D inconsistency
            if random.random() < self.opt.prob_grid_distortion:
                images_input[1:] = grid_distortion(images_input[1:])
            # apply camera jittering (only to input!)
            if random.random() < self.opt.prob_cam_jitter:
                cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
        #images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)

        results['input']=images_input #input view images, unused for tranformer based
        #results['input'] = None  # for gs based mesh

        #for transformer hard code size
        images_input_vit = F.interpolate(images_input, size=(224, 224), mode='bilinear', align_corners=False)
        #images_input_vit = TF.normalize(images_input_vit, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
        results['input_vit']=images_input_vit

        #if self.opt.volume_mode=='TRF':
        all_rays_o=[]
        all_rays_d=[]
        for i in range(vid_cnt):
            rays_o, rays_d = get_rays(cam_poses[i], scaled_input_size, scaled_input_size, self.opt.fovy) # [h, w, 3]
            all_rays_o.append(rays_o)
            all_rays_d.append(rays_d)
        all_rays_o=torch.stack(all_rays_o, dim=0)
        all_rays_d=torch.stack(all_rays_d, dim=0)
        
        if crop_params is not None:
            all_rays_o_crop=[]
            all_rays_d_crop=[]
            for k in range(all_rays_o.shape[0]):
                i, j, h, w = crop_params[k]
                all_rays_o_crop.append(all_rays_o[k][i:i+h, j:j+w, :])
                all_rays_d_crop.append(all_rays_d[k][i:i+h, j:j+w, :])
            
            all_rays_o=torch.stack(all_rays_o_crop, dim=0)
            all_rays_d=torch.stack(all_rays_d_crop, dim=0)
        
        results['all_rays_o']=all_rays_o
        results['all_rays_d']=all_rays_d

        # 相机外参,c2w
        # opengl to colmap camera for gaussian renderer
        cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
        
        # c2w的逆,w2c*投影内参,等于mvp矩阵
        # cameras needed by gaussian rasterizer
        cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
        cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
        cam_pos = - cam_poses[:, :3, 3] # [V, 3] #相机位子
        
        results['cam_view'] = cam_view
        results['cam_view_proj'] = cam_view_proj
        results['cam_pos'] = cam_pos

        #lrm用的是内参和外参的混合,这里先直接用外参试下, 实验可行
        results['source_camera']=cam_poses_input

        return results