Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,870 Bytes
c1c0440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import mcubes
import kiui
from kiui.lpips import LPIPS
from core.lrm_reconstructor import LRM_VSD_Mesh_Net
from core.options import Options
from core.tensoRF import TensorVMSplit_Mesh,TensorVMSplit_NeRF
from torchvision.transforms import v2
from core.geometry.camera.perspective_camera import PerspectiveCamera
from core.geometry.render.neural_render import NeuralRender
from core.geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
import nvdiffrast.torch as dr
from core.instant_utils.mesh_util import xatlas_uvmap
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#tensorSDF + transformer + volume_rendering
class LTRFM_NeRF(nn.Module):
def __init__(
self,
opt: Options,
):
super().__init__()
self.opt = opt
#predict svd using transformer
self.vsd_net = LRM_VSD_Mesh_Net(
camera_embed_dim=opt.camera_embed_dim,
transformer_dim=opt.transformer_dim,
transformer_layers=opt.transformer_layers,
transformer_heads=opt.transformer_heads,
triplane_low_res=opt.triplane_low_res,
triplane_high_res=opt.triplane_high_res,
triplane_dim=opt.triplane_dim,
encoder_freeze=opt.encoder_freeze,
encoder_type=opt.encoder_type,
encoder_model_name=opt.encoder_model_name,
encoder_feat_dim=opt.encoder_feat_dim,
app_dim=opt.app_dim,
density_dim=opt.density_dim,
app_n_comp=opt.app_n_comp,
density_n_comp=opt.density_n_comp,
)
aabb = torch.tensor([[-1, -1, -1], [1, 1, 1]]).cuda()
grid_size = torch.tensor([opt.splat_size, opt.splat_size, opt.splat_size]).cuda()
near_far =torch.tensor([opt.znear, opt.zfar]).cuda()
# tensorf Renderer
self.tensorRF = TensorVMSplit_NeRF(aabb, grid_size, density_n_comp=opt.density_n_comp,appearance_n_comp=opt.app_n_comp,app_dim=opt.app_dim,\
density_dim=opt.density_dim,near_far=near_far, shadingMode=opt.shadingMode, pos_pe=opt.pos_pe, view_pe=opt.view_pe, fea_pe=opt.fea_pe)
# LPIPS loss
if self.opt.lambda_lpips > 0:
self.lpips_loss = LPIPS(net='vgg')
self.lpips_loss.requires_grad_(False)
def state_dict(self, **kwargs):
# remove lpips_loss
state_dict = super().state_dict(**kwargs)
for k in list(state_dict.keys()):
if 'lpips_loss' in k:
del state_dict[k]
return state_dict
def set_beta(self,t):
self.tensorRF.lap_density.set_beta(t)
# predict svd_volume
def forward_svd_volume(self, images, data):
# images: [B, 4, 9, H, W]
# return: Gaussians: [B, dim_t]
B, V, C, H, W = images.shape
source_camera=data['source_camera']
images_vit=data['input_vit'] # for transformer
source_camera=source_camera.reshape(B,V,-1) # [B*V, 16]
app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines = self.vsd_net(images_vit,source_camera)
app_planes=app_planes.view(B,3,self.opt.app_n_comp,self.opt.splat_size,self.opt.splat_size)
app_lines=app_lines.view(B,3,self.opt.app_n_comp,self.opt.splat_size,1)
density_planes=density_planes.view(B,3,self.opt.density_n_comp,self.opt.splat_size,self.opt.splat_size)
density_lines=density_lines.view(B,3,self.opt.density_n_comp,self.opt.splat_size,1)
results = {
'app_planes': app_planes,
'app_lines': app_lines,
'basis_mat':basis_mat,
'd_basis_mat':d_basis_mat,
'density_planes':density_planes,
'density_lines':density_lines
}
return results
def extract_mesh(self,
planes: torch.Tensor,
mesh_resolution: int = 256,
mesh_threshold: int = 0.005,
use_texture_map: bool = False,
texture_resolution: int = 1024,):
device = planes['app_planes'].device
grid_size = mesh_resolution
points = torch.linspace(-1, 1, steps=grid_size).half()
x, y, z = torch.meshgrid(points, points, points)
xyz_samples = torch.stack((x, y, z), dim=0).unsqueeze(0).to(device)
xyz_samples=xyz_samples.permute(0,2,3,4,1)
xyz_samples=xyz_samples.view(1,-1,1,3)
grid_out = self.tensorRF.predict_sdf(planes,xyz_samples)
grid_out['sigma']=grid_out['sigma'].view(grid_size,grid_size,grid_size).float()
vertices, faces = mcubes.marching_cubes(
grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(),
mesh_threshold,
)
vertices = vertices / (mesh_resolution - 1) * 2 - 1
if not use_texture_map:
# query vertex colors
vertices_tensor = torch.tensor(vertices, dtype=torch.float32).to(device).unsqueeze(0)
rgb_colors = self.tensorRF.predict_color(
planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy()
rgb_colors = (rgb_colors * 255).astype(np.uint8)
albedob_colors = self.tensorRF.predict_color(
planes, vertices_tensor)['albedo'].squeeze(0).cpu().numpy()
albedob_colors = (albedob_colors * 255).astype(np.uint8)
shading_colors = self.tensorRF.predict_color(
planes, vertices_tensor)['shading'].squeeze(0).cpu().numpy()
shading_colors = (shading_colors * 255).astype(np.uint8)
return vertices, faces, [rgb_colors,albedob_colors,shading_colors]
# use x-atlas to get uv mapping for the mesh
vertices = torch.tensor(vertices, dtype=torch.float32, device=device)
faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device)
ctx = dr.RasterizeCudaContext(device=device)
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
ctx, vertices, faces, resolution=texture_resolution)
tex_hard_mask = tex_hard_mask.float().cpu()
# query the texture field to get the RGB color for texture map
#TBD here
query_vertices=gb_pos.view(1,texture_resolution*texture_resolution,3)
vertices_colors = self.tensorRF.predict_color(
planes, query_vertices)['rgb'].squeeze(0).cpu()
vertices_colors=vertices_colors.reshape(1,texture_resolution,texture_resolution,3)
background_feature = torch.zeros_like(vertices_colors)
img_feat = torch.lerp(background_feature, vertices_colors, tex_hard_mask.half())
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
#albedo
vertices_colors_albedo = self.tensorRF.predict_color(
planes, query_vertices)['albedo'].squeeze(0).cpu()
vertices_colors_albedo=vertices_colors_albedo.reshape(1,texture_resolution,texture_resolution,3)
background_feature = torch.zeros_like(vertices_colors_albedo)
img_feat = torch.lerp(background_feature, vertices_colors_albedo, tex_hard_mask.half())
texture_map_albedo = img_feat.permute(0, 3, 1, 2).squeeze(0)
return vertices, faces, uvs, mesh_tex_idx, [texture_map,texture_map_albedo]
def render_frame(self, data):
# data: output of the dataloader
# return: loss
#self.set_beta(data['t'])
results = {}
loss = 0
images = data['input_vit']
# use the first view to predict gaussians
svd_volume = self.forward_svd_volume(images,data) # [B, N, 14]
results['svd_volume'] = svd_volume
# always use white bg
bg_color = torch.ones(3, dtype=torch.float32).to(device)
# use the other views for rendering and supervision
results = self.tensorRF(svd_volume, data['all_rays_o'], data['all_rays_d'],is_train=True, bg_color=bg_color, N_samples=self.opt.n_sample)
pred_shading = results['image'] # [B, V, C, output_size, output_size]
pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
pred_albedos = results['albedo'] # [B, V, C, output_size, output_size]
pred_images = pred_shading*pred_albedos
results['images_pred'] = pred_images
results['alphas_pred'] = pred_alphas
results['pred_albedos'] = pred_albedos
results['pred_shading'] = pred_shading
return results
#tensorSDF + transformer + SDF + Mesh
class LTRFM_Mesh(nn.Module):
def __init__(
self,
opt: Options,
):
super().__init__()
self.opt = opt
# attributes
self.grid_res = 128 #grid_res
self.grid_scale = 2.0 #grid_scale
self.deformation_multiplier = 4.0
self.init_flexicubes_geometry(device, self.opt)
#predict svd using transformer
self.vsd_net = LRM_VSD_Mesh_Net(
camera_embed_dim=opt.camera_embed_dim,
transformer_dim=opt.transformer_dim,
transformer_layers=opt.transformer_layers,
transformer_heads=opt.transformer_heads,
triplane_low_res=opt.triplane_low_res,
triplane_high_res=opt.triplane_high_res,
triplane_dim=opt.triplane_dim,
encoder_freeze=opt.encoder_freeze,
encoder_type=opt.encoder_type,
encoder_model_name=opt.encoder_model_name,
encoder_feat_dim=opt.encoder_feat_dim,
app_dim=opt.app_dim,
density_dim=opt.density_dim,
app_n_comp=opt.app_n_comp,
density_n_comp=opt.density_n_comp,
)
aabb = torch.tensor([[-1, -1, -1], [1, 1, 1]]).to(device)
grid_size = torch.tensor([opt.splat_size, opt.splat_size, opt.splat_size]).to(device)
near_far =torch.tensor([opt.znear, opt.zfar]).to(device)
# tensorf Renderer
self.tensorRF = TensorVMSplit_Mesh(aabb, grid_size, density_n_comp=opt.density_n_comp,appearance_n_comp=opt.app_n_comp,app_dim=opt.app_dim,\
density_dim=opt.density_dim, near_far=near_far, shadingMode=opt.shadingMode, pos_pe=opt.pos_pe, view_pe=opt.view_pe, fea_pe=opt.fea_pe)
# LPIPS loss
if self.opt.lambda_lpips > 0:
self.lpips_loss = LPIPS(net='vgg')
self.lpips_loss.requires_grad_(False)
# load ckpt
if opt.ckpt_nerf is not None:
sd = torch.load(opt.ckpt_nerf, map_location='cpu')['model']
#sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
sd_fc = {}
for k, v in sd.items():
k=k.replace('module.', '')
if k.startswith('vsd.renderModule.'):
continue
else:
sd_fc[k] = v
sd_fc = {k.replace('vsd_net.', ''): v for k, v in sd_fc.items()}
sd_fc = {k.replace('tensorRF.', ''): v for k, v in sd_fc.items()}
# missing `net_deformation` and `net_weight` parameters
self.vsd_net.load_state_dict(sd_fc, strict=False)
self.tensorRF.load_state_dict(sd_fc, strict=False)
print(f'Loaded weights from {opt.ckpt_nerf}')
def state_dict(self, **kwargs):
# remove lpips_loss
state_dict = super().state_dict(**kwargs)
for k in list(state_dict.keys()):
if 'lpips_loss' in k:
del state_dict[k]
return state_dict
# predict svd_volume
def forward_svd_volume(self, images, data):
# images: [B, 4, 9, H, W]
# return: Gaussians: [B, dim_t]
B, V, C, H, W = images.shape
source_camera=data['source_camera']
images_vit=data['input_vit'] # for transformer
source_camera=source_camera.reshape(B,V,-1) # [B*V, 16]
app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines = self.vsd_net(images_vit,source_camera)
app_planes=app_planes.view(B,3,self.opt.app_n_comp,self.opt.splat_size,self.opt.splat_size)
app_lines=app_lines.view(B,3,self.opt.app_n_comp,self.opt.splat_size,1)
density_planes=density_planes.view(B,3,self.opt.density_n_comp,self.opt.splat_size,self.opt.splat_size)
density_lines=density_lines.view(B,3,self.opt.density_n_comp,self.opt.splat_size,1)
results = {
'app_planes': app_planes,
'app_lines': app_lines,
'basis_mat':basis_mat,
'd_basis_mat':d_basis_mat,
'density_planes':density_planes,
'density_lines':density_lines
}
return results
def init_flexicubes_geometry(self, device, opt):
camera = PerspectiveCamera(opt, device=device)
renderer = NeuralRender(device, camera_model=camera)
self.geometry = FlexiCubesGeometry(
grid_res=self.grid_res,
scale=self.grid_scale,
renderer=renderer,
render_type='neural_render',
device=device,
)
# query vsd for sdf weight and ...
def get_sdf_deformation_prediction(self, planes):
'''
Predict SDF and deformation for tetrahedron vertices
:param planes: triplane feature map for the geometry
'''
B = planes['app_lines'].shape[0]
init_position = self.geometry.verts.unsqueeze(0).expand(B, -1, -1)
sdf, deformation, weight = self.tensorRF.get_geometry_prediction(planes,init_position,self.geometry.indices)
deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation)
sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32)
sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1))
sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1)
pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1)
neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1)
zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0)
if torch.sum(zero_surface).item() > 0:
update_sdf = torch.zeros_like(sdf[0:1])
max_sdf = sdf.max()
min_sdf = sdf.min()
update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero
update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero
new_sdf = torch.zeros_like(sdf)
for i_batch in range(zero_surface.shape[0]):
if zero_surface[i_batch]:
new_sdf[i_batch:i_batch + 1] += update_sdf
update_mask = (new_sdf == 0).float()
# Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative)
sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1)
sdf_reg_loss = sdf_reg_loss * zero_surface.float()
sdf = sdf * update_mask + new_sdf * (1 - update_mask)
final_sdf = []
final_def = []
for i_batch in range(zero_surface.shape[0]):
if zero_surface[i_batch]:
final_sdf.append(sdf[i_batch: i_batch + 1].detach())
final_def.append(deformation[i_batch: i_batch + 1].detach())
else:
final_sdf.append(sdf[i_batch: i_batch + 1])
final_def.append(deformation[i_batch: i_batch + 1])
sdf = torch.cat(final_sdf, dim=0)
deformation = torch.cat(final_def, dim=0)
return sdf, deformation, sdf_reg_loss, weight
def get_geometry_prediction(self, planes=None):
'''
Function to generate mesh with give triplanes
:param planes: triplane features
'''
sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes)
v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation
tets = self.geometry.indices
n_batch = planes['app_planes'].shape[0]
v_list = []
f_list = []
flexicubes_surface_reg_list = []
for i_batch in range(n_batch):
verts, faces, flexicubes_surface_reg = self.geometry.get_mesh(
v_deformed[i_batch],
sdf[i_batch].squeeze(dim=-1),
with_uv=False,
indices=tets,
weight_n=weight[i_batch].squeeze(dim=-1),
is_training=self.training,
)
flexicubes_surface_reg_list.append(flexicubes_surface_reg)
v_list.append(verts)
f_list.append(faces)
flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean()
flexicubes_weight_reg = (weight ** 2).mean()
return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg)
def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
'''
Predict Texture given triplanes
:param planes: the triplane feature map
:param tex_pos: Position we want to query the texture field
:param hard_mask: 2D silhoueete of the rendered image
'''
B = planes['app_planes'].shape[0]
tex_pos = torch.cat(tex_pos, dim=0)
if not hard_mask is None:
tex_pos = tex_pos * hard_mask.float()
batch_size = tex_pos.shape[0]
tex_pos = tex_pos.reshape(batch_size, -1, 3)
###################
# We use mask to get the texture location (to save the memory)
if hard_mask is not None:
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
sample_tex_pose_list = []
max_point = n_point_list.max()
if max_point==0: # xrg: hard mask may filter all points, and don not left any point
max_point=max_point+1
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
for i in range(tex_pos.shape[0]):
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
if tex_pos_one_shape.shape[1] < max_point:
tex_pos_one_shape = torch.cat(
[tex_pos_one_shape, torch.zeros(
1, max_point - tex_pos_one_shape.shape[1], 3,
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
sample_tex_pose_list.append(tex_pos_one_shape)
tex_pos = torch.cat(sample_tex_pose_list, dim=0)
#return texture rgb
tex_feat = self.tensorRF.get_texture_prediction(tex_pos,vsd_vome=planes)
if hard_mask is not None:
final_tex_feat = torch.zeros(
B, hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
for i in range(B):
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
tex_feat = final_tex_feat
return tex_feat.reshape(B, hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256):
'''
Function to render a generated mesh with nvdiffrast
:param mesh_v: List of vertices for the mesh
:param mesh_f: List of faces for the mesh
:param cam_mv: 4x4 rotation matrix
:return:
'''
return_value_list = []
for i_mesh in range(len(mesh_v)):
return_value = self.geometry.render_mesh(
mesh_v[i_mesh],
mesh_f[i_mesh].int(),
cam_mv[i_mesh],
resolution=render_size,
hierarchical_mask=False
)
return_value_list.append(return_value)
return_keys = return_value_list[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in return_value_list]
return_value[k] = value
mask = torch.cat(return_value['mask'], dim=0)
hard_mask = torch.cat(return_value['hard_mask'], dim=0)
tex_pos = return_value['tex_pos']
depth = torch.cat(return_value['depth'], dim=0)
normal = torch.cat(return_value['normal'], dim=0)
return mask, hard_mask, tex_pos, depth, normal
def forward_geometry(self, planes, render_cameras, render_size=256):
'''
Main function of our Generator. It first generate 3D mesh, then render it into 2D image
with given `render_cameras`.
:param planes: triplane features
:param render_cameras: cameras to render generated 3D shape, a w2c matrix
'''
B, NV = render_cameras.shape[:2]
# Generate 3D mesh first
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
# Render the mesh into 2D image (get 3d position of each image plane) continue for here
cam_mv = render_cameras
run_n_view = cam_mv.shape[1]
antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size)
tex_hard_mask = hard_mask
tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos]
tex_hard_mask = torch.cat(
[torch.cat(
[tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1]
for i_view in range(run_n_view)], dim=2)
for i in range(B)], dim=0)
# Querying the texture field to predict the texture feature for each pixel on the image
tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask)
background_feature = torch.ones_like(tex_feat) # white background
# Merge them together
img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask)
# We should split it back to the original image shape
img_feat = torch.cat(
[torch.cat(
[img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)]
for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0)
img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
albedo=img[:,:,3:6,:,:]
img=img[:,:,0:3,:,:]
antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV))
depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive
normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV))
out = {
'image': img,
'albedo': albedo,
'mask': antilias_mask,
'depth': depth,
'normal': normal,
'sdf': sdf,
'mesh_v': mesh_v,
'mesh_f': mesh_f,
'sdf_reg_loss': sdf_reg_loss,
}
return out
def render_frame(self, data):
# data: output of the dataloader
# return: loss
results = {}
images = data['input_vit'] # [B, 4, 9, h, W], input features
# use the first view to predict gaussians
svd_volume = self.forward_svd_volume(images,data) # [B, N, 14]
results['svd_volume'] = svd_volume
# return the rendered images
results = self.forward_geometry(svd_volume, data['w2c'], self.opt.infer_render_size)
# always use white bg
bg_color = torch.ones(3, dtype=torch.float32).to(device)
pred_shading = results['image'] # [B, V, C, output_size, output_size]
pred_alphas = results['mask'] # [B, V, 1, output_size, output_size]
pred_albedos = results['albedo'] # [B, V, C, output_size, output_size]
pred_images=pred_shading*pred_albedos
results['images_pred'] = pred_images
results['alphas_pred'] = pred_alphas
results['pred_albedos'] = pred_albedos
results['pred_shading'] = pred_shading
return results
def extract_mesh(
self,
planes: torch.Tensor,
use_texture_map: bool = False,
texture_resolution: int = 1024,
**kwargs,
):
'''
Extract a 3D mesh from FlexiCubes. Only support batch_size 1.
:param planes: triplane features
:param use_texture_map: use texture map or vertex color
:param texture_resolution: the resolution of texure map
'''
assert planes['app_planes'].shape[0] == 1
device = planes['app_planes'].device
# predict geometry first
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
vertices, faces = mesh_v[0], mesh_f[0]
if not use_texture_map:
# query vertex colors
vertices_tensor = vertices.unsqueeze(0)
rgb_colors = self.tensorRF.predict_color(planes, vertices_tensor)['rgb'].clamp(0, 1).squeeze(0).cpu().numpy()
rgb_colors = (rgb_colors * 255).astype(np.uint8)
albedob_colors = self.tensorRF.predict_color(planes, vertices_tensor)['albedo'].clamp(0, 1).squeeze(0).cpu().numpy()
albedob_colors = (albedob_colors * 255).astype(np.uint8)
shading_colors = self.tensorRF.predict_color(planes, vertices_tensor)['shading'].clamp(0, 1).squeeze(0).cpu().numpy()
shading_colors = (shading_colors * 255).astype(np.uint8)
return vertices.cpu().numpy(), faces.cpu().numpy(), [rgb_colors,albedob_colors,shading_colors]
# use x-atlas to get uv mapping for the mesh
ctx = dr.RasterizeCudaContext(device=device)
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution)
tex_hard_mask = tex_hard_mask.float().cpu()
# query the texture field to get the RGB color for texture map
#TBD here
query_vertices=gb_pos.view(1,texture_resolution*texture_resolution,3)
vertices_colors = self.tensorRF.predict_color(
planes, query_vertices)['rgb'].squeeze(0).cpu()
vertices_colors=vertices_colors.reshape(1,texture_resolution,texture_resolution,3)
background_feature = torch.zeros_like(vertices_colors)
img_feat = torch.lerp(background_feature, vertices_colors, tex_hard_mask)
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
return vertices, faces, uvs, mesh_tex_idx, texture_map
|