Spaces:
Running
Running
File size: 19,738 Bytes
6b770b4 637d86b 6b770b4 637d86b 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab 6b770b4 c3d09ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
###############################################################################
# GLOBAL STORAGE OF PARAMETERS
###############################################################################
PARAMS = {}
###############################################################################
# DERIVED RATES + PUSH/PULL HELPER FUNCTIONS
###############################################################################
def compute_derived_rates(
# Product A (replaces Smart phone)
product_value_A, salvage_rate_A, life_cycle_A, capital_return_A,
# Product B (replaces Feature phone)
product_value_B, salvage_rate_B, life_cycle_B, capital_return_B,
# Freight
overnight_rate, standard_ratio, volume_discount,
# Picking
pick_first, pick_follow,
# Product mapping - NEW
productA_keyword, productB_keyword
):
"""
Reads the user inputs, calculates weekly inventory cost, freight rates, etc.
Stores results in PARAMS + returns summary text.
"""
try:
# Convert everything to float
pv_A = float(product_value_A)
sr_A = float(salvage_rate_A)
lc_A = float(life_cycle_A)
cr_A = float(capital_return_A)
pv_B = float(product_value_B)
sr_B = float(salvage_rate_B)
lc_B = float(life_cycle_B)
cr_B = float(capital_return_B)
on_rate = float(overnight_rate)
std_ratio = float(standard_ratio)
vol_disc = float(volume_discount)
pk_first = float(pick_first)
pk_follow = float(pick_follow)
# Liquidation values
liq_A = pv_A * sr_A
liq_B = pv_B * sr_B
# Weekly inventory cost
inv_A = (pv_A * cr_A / 52.0) + ((pv_A - liq_A) / lc_A)
inv_B = (pv_B * cr_B / 52.0) + ((pv_B - liq_B) / lc_B)
# Standard freight
std_freight = (on_rate / std_ratio) * vol_disc
# Store in global dict
PARAMS["productA_inventory_cost"] = inv_A
PARAMS["productB_inventory_cost"] = inv_B
PARAMS["overnight_rate"] = on_rate
PARAMS["standard_freight"] = std_freight
PARAMS["pick_first"] = pk_first
PARAMS["pick_follow"] = pk_follow
# Store product mapping keywords
PARAMS["productA_keyword"] = productA_keyword if productA_keyword else "Smart"
PARAMS["productB_keyword"] = productB_keyword if productB_keyword else "Feature"
summary = [
"## Computed Derived Rates:",
f"- **Product A weekly inventory**: ${inv_A:.2f}/unit",
f"- **Product B weekly inventory**: ${inv_B:.2f}/unit",
f"- **Overnight freight rate**: ${on_rate:.2f}",
f"- **Standard freight rate**: ${std_freight:.2f}",
f"- **Pick cost (first)**: ${pk_first:.2f}, (follow-up): ${pk_follow:.2f}",
"",
"## Product Mapping:",
f"- **Product A stores**: containing '{PARAMS['productA_keyword']}'",
f"- **Product B stores**: containing '{PARAMS['productB_keyword']}'"
]
return "\n".join(summary)
except ValueError as e:
return f"Error converting to floats: {str(e)}"
def compute_inventory_cost(row):
"""
Flexible method to determine product type based on store name or Product_Type column.
Uses the keyword mappings defined by the user when setting up parameters.
"""
# First check if there's a dedicated Product_Type column
if 'Product_Type' in row:
product_type = str(row['Product_Type']).strip().upper()
if product_type == 'A':
rate = PARAMS.get("productA_inventory_cost", 0.0)
else:
rate = PARAMS.get("productB_inventory_cost", 0.0)
else:
# Fall back to using the configured keywords for matching store names
store_name = str(row["Store"])
productA_keyword = PARAMS.get("productA_keyword", "Smart")
productB_keyword = PARAMS.get("productB_keyword", "Feature")
# Check if store name contains the product A keyword
if productA_keyword in store_name:
rate = PARAMS.get("productA_inventory_cost", 0.0)
# Check if store name contains the product B keyword
elif productB_keyword in store_name:
rate = PARAMS.get("productB_inventory_cost", 0.0)
else:
# If no match, log warning and default to product B cost
print(f"Warning: Store '{store_name}' doesn't match any product keyword. Defaulting to Product B.")
rate = PARAMS.get("productB_inventory_cost", 0.0)
return row["Onhand_Inventory"] * rate
def compute_shipping_cost(row):
"""If strategy=Pull => overnight, else => standard freight."""
if row["Strategy"] == "Pull":
return row["Weekly_Sales"] * PARAMS.get("overnight_rate", 0.0)
else:
return row["Weekly_Sales"] * PARAMS.get("standard_freight", 0.0)
def compute_picking_cost(row):
"""Pull => usage * pick_first; Push => pick_first + (usage-1)*pick_follow (if usage>1)."""
sales = row["Weekly_Sales"]
first = PARAMS.get("pick_first", 1.0)
follow = PARAMS.get("pick_follow", 0.1)
if row["Strategy"] == "Pull":
return sales * first
else:
if sales > 1:
return first + (sales - 1)*follow
elif sales == 1:
return first
else:
return 0.0
###############################################################################
# PUSH/PULL ANALYSIS FUNCTION
###############################################################################
def run_push_pull_analysis(df):
"""
Expects columns: Store, Strategy, Onhand_Inventory, Weekly_Sales
Returns:
- text summary
- cost breakdown chart
- savings chart
- and a DataFrame with new cost columns
"""
# Convert relevant columns to numeric
for col in ["Onhand_Inventory","Weekly_Sales"]:
df[col] = pd.to_numeric(df[col], errors="coerce").fillna(0)
# Compute cost columns
df["Inventory_Cost"] = df.apply(compute_inventory_cost, axis=1)
df["Shipping_Cost"] = df.apply(compute_shipping_cost, axis=1)
df["PickPack_Cost"] = df.apply(compute_picking_cost, axis=1)
df["Total_Cost"] = df["Inventory_Cost"] + df["Shipping_Cost"] + df["PickPack_Cost"]
# Summation text
lines = []
strategies = df["Strategy"].unique()
for s in strategies:
sub = df[df["Strategy"]==s]
inv_sum = sub["Inventory_Cost"].sum()
shp_sum = sub["Shipping_Cost"].sum()
pkp_sum = sub["PickPack_Cost"].sum()
ttl_sum = sub["Total_Cost"].sum()
lines.append(f"**{s}** Strategy:")
lines.append(f"- Inventory: ${inv_sum:,.2f}")
lines.append(f"- Shipping: ${shp_sum:,.2f}")
lines.append(f"- PickPack: ${pkp_sum:,.2f}")
lines.append(f"- **Total**: ${ttl_sum:,.2f}")
lines.append("")
# If we have both Pull and Push, compute overall % saving
if len(strategies)==2 and set(strategies)=={"Pull","Push"}:
push_total = df.loc[df["Strategy"]=="Push","Total_Cost"].sum()
pull_total = df.loc[df["Strategy"]=="Pull","Total_Cost"].sum()
if push_total>0:
saving = (push_total - pull_total)/push_total*100
lines.append(f"**Overall % saving from Pull**: {saving:.2f}%")
text_summary = "\n".join(lines)
# Chart 1: Stacked cost breakdown
group_sums = df.groupby("Strategy")[["Inventory_Cost","Shipping_Cost","PickPack_Cost"]].sum()
fig1, ax1 = plt.subplots(figsize=(6,4))
group_sums.plot.bar(stacked=True, ax=ax1)
ax1.set_title("Cost Breakdown by Strategy")
ax1.set_ylabel("Cost ($)")
# Move legend so it doesn't cover the bars
ax1.legend(loc='upper left', bbox_to_anchor=(1,1))
plt.tight_layout()
buf1 = BytesIO()
plt.savefig(buf1, format="png", bbox_inches="tight")
buf1.seek(0)
cost_img = Image.open(buf1)
plt.close(fig1)
# Chart 2: Savings by store ( (Push - Pull)/Push )
stores = df["Store"].unique()
savings_dict = {}
for store in stores:
sub = df[df["Store"]==store]
if sub["Strategy"].nunique()==2:
push_val = sub.loc[sub["Strategy"]=="Push","Total_Cost"].values[0]
pull_val = sub.loc[sub["Strategy"]=="Pull","Total_Cost"].values[0]
if push_val>0:
pct = (push_val - pull_val)/push_val*100
else:
pct = 0
savings_dict[store] = pct
fig2, ax2 = plt.subplots(figsize=(6,4))
labels = list(savings_dict.keys())
values = [savings_dict[x] for x in labels]
bars = ax2.bar(labels, values, color="skyblue")
ax2.axhline(y=0, color="black", linewidth=1)
ax2.set_ylabel("% Savings (Push vs Pull)")
ax2.set_title("Savings by Store (Pull vs. Push)")
plt.xticks(rotation=45)
for bar, val in zip(bars, values):
ax2.text(bar.get_x()+bar.get_width()/2,
(val*0.5 if val>0 else val-5),
f"{val:.2f}%", ha="center")
plt.tight_layout()
buf2 = BytesIO()
plt.savefig(buf2, format="png", bbox_inches="tight")
buf2.seek(0)
savings_img = Image.open(buf2)
plt.close(fig2)
return text_summary, cost_img, savings_img, df
###############################################################################
# CATEGORY ANALYSIS (STORES AS ITEMS, similar to "ABC")
###############################################################################
def run_category_analysis_on_stores(df, multiplier=26):
"""
Takes the push/pull result DataFrame (with columns Inventory_Cost, Shipping_Cost,
PickPack_Cost, Weekly_Sales, Store, Strategy).
1) We create "Category_Cost" = sum of Inventory + Shipping + PickPack.
2) "Usage" = Weekly_Sales
3) "Annual_Spend" = Usage * Category_Cost * multiplier
4) Sort desc, cumulative %, classify => A/B/C
Returns text summary + Pareto chart.
"""
# Build the cost
df["Category_Cost"] = df["Inventory_Cost"] + df["Shipping_Cost"] + df["PickPack_Cost"]
# MODIFIED: Create a combined Store-Strategy identifier
df["StoreStrategy"] = df["Store"] + "-" + df["Strategy"]
# Build a smaller Category df
# MODIFIED: Use StoreStrategy instead of just Store
cat_df = df[["StoreStrategy","Weekly_Sales","Category_Cost"]].copy()
cat_df.rename(columns={
"StoreStrategy":"ItemName", # MODIFIED: Using the combined identifier
"Weekly_Sales":"Usage",
"Category_Cost":"UnitCost"
}, inplace=True)
# Annual spend
cat_df["Annual_Spend"] = cat_df["Usage"] * cat_df["UnitCost"] * multiplier
# Sort desc
cat_df = cat_df.sort_values("Annual_Spend", ascending=False).reset_index(drop=True)
total_spend = cat_df["Annual_Spend"].sum()
cat_df["Cumulative_Spend"] = cat_df["Annual_Spend"].cumsum()
if total_spend>0:
cat_df["Cumulative_Percent"] = cat_df["Cumulative_Spend"]/total_spend*100
else:
cat_df["Cumulative_Percent"] = 0
# Classify each item as A/B/C
def classify_abc(pct):
if pct <= 70:
return "A"
elif pct <= 90:
return "B"
else:
return "C"
cat_df["Category"] = cat_df["Cumulative_Percent"].apply(classify_abc)
# Text summary
lines = ["## Category Analysis (Store-Strategy as Item)"] # MODIFIED: Updated title
cat_grp = cat_df.groupby("Category")["Annual_Spend"].agg(["sum","count"])
for cat in ["A","B","C"]:
if cat in cat_grp.index:
s = cat_grp.loc[cat,"sum"]
c = cat_grp.loc[cat,"count"]
pct_spend = (s/total_spend*100 if total_spend else 0)
lines.append(f"\n**Category {cat}**:")
lines.append(f" - Items: {c}")
lines.append(f" - Spend: ${s:,.2f} ({pct_spend:.1f}%)")
txt_summary = "\n".join(lines)
# Pareto chart
fig, ax1 = plt.subplots(figsize=(8,5)) # MODIFIED: Increased figure width for longer labels
ranks = cat_df.index + 1
# MODIFIED: Store the actual labels for plotting
store_strategy_labels = cat_df["ItemName"].values
ax1.bar(ranks, cat_df["Annual_Spend"], color="lightblue", label="Annual Spend")
ax1.set_xlabel("Store-Strategy Combinations (Sorted by Descending Spend)") # MODIFIED: Updated label
ax1.set_ylabel("Annual Spend", color="blue")
ax1.tick_params(axis='y', labelcolor='blue')
# MODIFIED: Set x-tick labels to store-strategy combinations
ax1.set_xticks(ranks)
ax1.set_xticklabels(store_strategy_labels, rotation=45, ha='right') # Rotate labels for readability
ax2 = ax1.twinx()
ax2.plot(ranks, cat_df["Cumulative_Percent"], color="red", linewidth=2, label="Cumulative %")
ax2.set_ylabel("Cumulative %", color="red")
ax2.tick_params(axis='y', labelcolor='red')
ax2.axhline(y=70, color="gray", linestyle="--", alpha=0.7)
ax2.axhline(y=90, color="gray", linestyle="--", alpha=0.7)
plt.title("Category Pareto Chart - (Store-Strategy as Item)") # MODIFIED: Updated title
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
chart_img = Image.open(buf)
plt.close(fig)
return txt_summary, chart_img
###############################################################################
# SINGLE FUNCTION TO RUN BOTH ANALYSES ON ONE CSV
###############################################################################
def run_both_analyses(file):
"""
1) Read user CSV (with columns: Store, Strategy, Onhand_Inventory, Weekly_Sales).
2) Do push/pull => text + 2 images + resulting DF.
3) Do category analysis => text + 1 image (on that resulting DF).
4) Return everything to Gradio.
"""
if file is None:
return (
"No file uploaded!", None, None,
"No file => Category Analysis not run!", None
)
# Read CSV
try:
df = pd.read_csv(file.name)
except Exception as e:
return (
f"Error reading CSV: {e}", None, None,
"Category Analysis not run", None
)
# Run push/pull
try:
pp_text, cost_img, savings_img, df_res = run_push_pull_analysis(df)
except Exception as e:
return (
f"Push/Pull error: {e}", None, None,
"Category Analysis not run", None
)
# Run category analysis
try:
cat_text, cat_chart = run_category_analysis_on_stores(df_res, multiplier=26)
except Exception as e:
cat_text = f"Category Analysis error: {e}"
cat_chart = None
return (
pp_text, cost_img, savings_img,
cat_text, cat_chart
)
###############################################################################
# BUILD GRADIO APP
###############################################################################
def build_app():
with gr.Blocks(theme="JohnSmith9982/small_and_pretty") as app:
gr.Markdown("# Push/Pull and Category Analysis")
gr.Markdown("**Instructions**:")
gr.Markdown(
"1. Fill in the parameter inputs and click **Compute Derived Rates**.\n"
"2. Upload **one CSV** with columns: `Store, Strategy, Onhand_Inventory, Weekly_Sales`.\n"
"3. Click **Run Both Analyses** to see Push/Pull results (2 charts) + Category Analysis results (Pareto chart)."
)
# Parameter inputs
with gr.Tab("Parameter Inputs"):
gr.Markdown("Enter your product/freight/pick parameters. Then click the button.")
with gr.Row():
with gr.Column():
gr.Markdown("### Product A")
product_value_A = gr.Textbox(label="Product Value ($)", value="500")
salvage_rate_A = gr.Textbox(label="Salvage Rate (0-1)", value="0.0")
life_cycle_A = gr.Textbox(label="Life cycle (weeks)", value="26")
capital_return_A = gr.Textbox(label="Capital return rate (0-1)", value="0.08")
with gr.Column():
gr.Markdown("### Product B")
product_value_B = gr.Textbox(label="Product Value ($)", value="200")
salvage_rate_B = gr.Textbox(label="Salvage Rate (0-1)", value="0.0")
life_cycle_B = gr.Textbox(label="Life cycle (weeks)", value="26")
capital_return_B = gr.Textbox(label="Capital return rate (0-1)", value="0.08")
with gr.Row():
with gr.Column():
gr.Markdown("### Freight")
overnight_rate = gr.Textbox(label="Overnight Rate ($)", value="12")
standard_ratio = gr.Textbox(label="Overnight/Standard Ratio", value="2.5")
volume_discount = gr.Textbox(label="Volume Discount (0-1)", value="0.5")
with gr.Column():
gr.Markdown("### Picking Costs")
pick_first = gr.Textbox(label="First Pick Cost ($)", value="1")
pick_follow = gr.Textbox(label="Follow-up Pick Cost ($)", value="0.1")
# Add Product mapping section
with gr.Row():
with gr.Column():
gr.Markdown("### Product Mapping")
productA_keyword = gr.Textbox(label="Product A Keyword (in store name)", value="Smart")
productB_keyword = gr.Textbox(label="Product B Keyword (in store name)", value="Feature")
compute_btn = gr.Button("Compute Derived Rates")
param_output = gr.Markdown()
# When user clicks, compute derived rates
compute_btn.click(
fn=compute_derived_rates,
inputs=[
product_value_A,
salvage_rate_A,
life_cycle_A,
capital_return_A,
product_value_B,
salvage_rate_B,
life_cycle_B,
capital_return_B,
overnight_rate,
standard_ratio,
volume_discount,
pick_first,
pick_follow,
productA_keyword,
productB_keyword
],
outputs=param_output
)
# Single CSV => run both analyses
with gr.Tab("Upload & Run"):
file_input = gr.File(label="Single CSV for both analyses")
run_btn = gr.Button("Run Both Analyses")
# 5 outputs from run_both_analyses
pushpull_text = gr.Markdown(label="Push/Pull Summary")
cost_chart_img = gr.Image(label="Cost Breakdown by Strategy")
savings_chart_img = gr.Image(label="Savings by Store")
cat_text = gr.Markdown(label="Category Analysis Summary")
cat_chart_img = gr.Image(label="Category Pareto Chart")
run_btn.click(
fn=run_both_analyses,
inputs=[file_input],
outputs=[
pushpull_text,
cost_chart_img,
savings_chart_img,
cat_text,
cat_chart_img
]
)
return app
###############################################################################
# MAIN
###############################################################################
if __name__ == "__main__":
app = build_app()
app.launch(debug=True) |