File size: 5,097 Bytes
5cbcc4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Main file for training Yolo model on Pascal VOC and COCO dataset
"""

import config
import torch
import torch.optim as optim
import albumentations as A
import cv2
from albumentations.pytorch import ToTensorV2


from model import YOLOv3,YOLOV3LITE
from tqdm import tqdm
from utils import (
    mean_average_precision,
    cells_to_bboxes,
    get_evaluation_bboxes,
    save_checkpoint,
    load_checkpoint,
    check_class_accuracy,
    get_loaders,
    plot_couple_examples
)
from dataset import YOLODatasetOK
from utils import non_max_suppression,plot_image
from loss import YoloLoss
import warnings
warnings.filterwarnings("ignore")
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger,TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import torch.optim as optim
import pytorch_lightning as pl

torch.backends.cudnn.benchmark = True



def load_checkpoint(checkpoint_file, model, optimizer, lr):
    print("=> Loading checkpoint")
    checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
    model.load_state_dict(checkpoint["state_dict"])
    # optimizer.load_state_dict(checkpoint["optimizer"])

    # # If we don't do this then it will just have learning rate of old checkpoint
    # # and it will lead to many hours of debugging \:
    # for param_group in optimizer.param_groups:
    #     param_group["lr"] = lr
    return model


def main():
    train_data="100examples.csv"
    valid_data = "2examples.csv"
    test_data="8examples.csv"
    train_loader, test_ldr, train_eval_loader = get_loaders(
        train_csv_path=config.DATASET + "/"+train_data, test_csv_path=config.DATASET + "/"+test_data,valid_csv_path=config.DATASET + "/"+valid_data)
    #trainer = pl.Trainer()
    #test_ldr_final = get_loaders_new(test_csv_path=config.DATASET + "/"+test_data)
   
    trainer= pl.Trainer(
    max_epochs=8,
    accelerator="auto",
    check_val_every_n_epoch=5,
    devices=1 if torch.cuda.is_available() else None,  # limiting got iPython runs
    logger=TensorBoardLogger(save_dir="logs/"),
    precision = 16,
    #callbacks=[LearningRateMonitor(logging_interval='epoch')]
    )



    #model = YOLOV3LITE(train_loader,test_ldr,train_eval_loader)
    #trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=train_eval_loader)
    model_handler = YOLOV3LITE()

   

    # loaded_model =load_checkpoint(
    #         config.CHECKPOINT_FILE,model_handler.model, model_handler.optimizer, config.LEARNING_RATE
    #     )
    loaded_model =load_checkpoint(
            config.CHECKPOINT_FILE,model_handler, model_handler.optimizer, config.LEARNING_RATE
        )
    
    
    test_transform = A.Compose(
        [
            # Rescale an image so that maximum side is equal to image_size
            A.LongestMaxSize(max_size=config.IMAGE_SIZE),
            # Pad remaining areas with zeros
            A.PadIfNeeded(
                min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
            ),
            # Normalize the image
            A.Normalize(
                mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255
            ),
            # Convert the image to PyTorch tensor
            ToTensorV2()
        ],
    # Augmentation for bounding boxes 
    bbox_params=A.BboxParams(
                    format="yolo", 
                    min_visibility=0.4, 
                    label_fields=[]
                ))
    
    dataset = YOLODatasetOK(
        csv_file=config.DATASET + "/"+test_data,
        img_dir=config.IMG_DIR,
        label_dir=config.LABEL_DIR,
        S=[13, 26, 52],
        anchors=config.ANCHORS,
        transform=test_transform
    )

    # Creating a dataloader object
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=8,
        shuffle=True,
    )
    scaled_anchors = (
    torch.tensor(config.ANCHORS)
    * torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    ).to(config.DEVICE)
    
    plot_couple_examples(loaded_model, loader, 0.6,0.5,scaled_anchors)

    # # Defining the grid size and the scaled anchors
    # GRID_SIZE = [13, 26, 52]
    # scaled_anchors = torch.tensor(config.ANCHORS) / (
    #     1 / torch.tensor(GRID_SIZE).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    # )

    # # Getting a batch from the dataloader
    # x, y = next(iter(loader))

    # # Getting the boxes coordinates from the labels
    # # and converting them into bounding boxes without scaling
    # boxes = []
    # for i in range(y[0].shape[1]):
    #     anchor = scaled_anchors[i]
    #     boxes += cells_to_bboxes(
    #             y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
    #             )[0]

    # # Applying non-maximum suppression
    # boxes = non_max_suppression(boxes, iou_threshold=1, threshold=0.7)

    # # Plotting the image with the bounding boxes
    # plot_image(x[0].permute(1,2,0).to("cpu"), boxes)

    


if __name__ == "__main__":
    main()