File size: 4,316 Bytes
6f18d96
de89f27
068e122
 
a2892b8
 
 
068e122
 
a2892b8
068e122
 
a2892b8
456564b
 
 
 
de89f27
a293966
 
 
a2892b8
 
068e122
a2892b8
a293966
 
 
a2892b8
 
a293966
 
a2892b8
a293966
 
 
 
 
 
 
 
 
 
 
83dc93b
a293966
83dc93b
 
 
 
 
 
 
 
 
a293966
 
83dc93b
 
 
 
a2892b8
068e122
 
a293966
 
 
 
 
 
a2892b8
 
 
a293966
 
068e122
6d96720
827b51a
 
068e122
 
a293966
 
 
 
 
 
068e122
a2892b8
a293966
068e122
750bdfe
 
 
068e122
 
a2892b8
a293966
068e122
 
a2892b8
a293966
a2892b8
750bdfe
a293966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2892b8
a293966
 
 
750bdfe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import subprocess

# Instalar un paquete utilizando pip desde Python
subprocess.check_call(["pip", "install", "langchain_community","langchain"])
# Import necessary libraries
import streamlit as st
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
import os
from getpass import getpass
from langchain import HuggingFaceHub
from langchain_community.llms import HuggingFaceEndpoint
from langchain_core.output_parsers import StrOutputParser
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from personalities import*




# Set Streamlit page configuration
st.set_page_config(page_title='🧠MemoryBot🤖', layout='wide')
# Initialize session states. Un session state es como un diccionario
if "generated" not in st.session_state:
    st.session_state["generated"] = []
if "past" not in st.session_state:
    st.session_state["past"] = []
if "input" not in st.session_state:
    st.session_state["input"] = ""
if "stored_session" not in st.session_state:
    st.session_state["stored_session"] = []

# Define function to get user input
def get_text():
    """
    Get the user input text.
    Returns:
        (str): The text entered by the user
    """
    input_text = st.text_input("You: ", st.session_state["input"], key="input",
                            placeholder="Your AI assistant here! Ask me anything ...", 
                            label_visibility='hidden')
    return input_text

# #parte para hacer un chat nuevo 
def new_chat():
    """
    Clears session state and starts a new chat.
    """
    save = []
    for i in range(len(st.session_state['generated'])-1, -1, -1):
        save.append("User:" + st.session_state["past"][i])
        save.append("Bot:" + st.session_state["generated"][i])        
    st.session_state["stored_session"].append(save)
    st.session_state["generated"] = []
    st.session_state["past"] = []
    st.session_state["input"] = ""
    st.session_state.entity_memory.entity_store = {}
    st.session_state.entity_memory.buffer.clear()

# Add a button to start a new chat
st.sidebar.button("New Chat", on_click = new_chat, type='primary')




# Move K outside of the sidebar expander
K = st.sidebar.number_input(' (#)Summary of prompts to consider', min_value=3, max_value=1000)

# Set up the Streamlit app layout
st.title("Personalized chatbot")



# Create an OpenAI instance
llm = HuggingFaceEndpoint(repo_id='mistralai/Mistral-7B-Instruct-v0.2', 
                          temperature=0.3, 
                          model_kwargs = {"max_length":128},
                          huggingfacehub_api_token = os.environ["HUGGINGFACEHUB_API_TOKEN"])







# Create a ConversationEntityMemory object if not already created
if 'entity_memory' not in st.session_state:
    st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K )
    
    # Create the ConversationChain object with the specified configuration
Conversation = ConversationChain(llm=llm, 
                                 prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
                                 memory=st.session_state.entity_memory
    )  


# Get the user input
user_input = get_text()

# Generate the output using the ConversationChain object and the user input, and add the input/output to the session
if user_input:
    output = Conversation.run(input=user_input)  
    st.session_state.past.append(user_input)  
    st.session_state.generated.append(output)  


# Display the conversation history using an expander, and allow the user to download it
with st.expander("Conversation", expanded=True):
    for i in range(len(st.session_state['generated'])-1, -1, -1):
        st.info(st.session_state["past"][i],icon="🧐")
        st.success(st.session_state["generated"][i], icon="🤖")



# Display stored conversation sessions in the sidebar
for i, sublist in enumerate(st.session_state.stored_session):
        with st.sidebar.expander(label= f"Conversation-Session:{i}"):
            st.write(sublist)

# Allow the user to clear all stored conversation sessions
if st.session_state.stored_session:   
    if st.sidebar.checkbox("Clear-all"):
        del st.session_state.stored_session