File size: 43,920 Bytes
01e491f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# pytorch 1.5.0
import copy
import math
import warnings
from typing import Optional

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter
from torch.nn import functional as F
from torch.nn.init import constant_, xavier_uniform_


def multi_head_attention_forward(query,                           # type: Tensor
                                 key,                             # type: Tensor
                                 value,                           # type: Tensor
                                 embed_dim_to_check,              # type: int
                                 num_heads,                       # type: int
                                 in_proj_weight,                  # type: Tensor
                                 in_proj_bias,                    # type: Tensor
                                 bias_k,                          # type: Optional[Tensor]
                                 bias_v,                          # type: Optional[Tensor]
                                 add_zero_attn,                   # type: bool
                                 dropout_p,                       # type: float
                                 out_proj_weight,                 # type: Tensor
                                 out_proj_bias,                   # type: Tensor
                                 training=True,                   # type: bool
                                 key_padding_mask=None,           # type: Optional[Tensor]
                                 need_weights=True,               # type: bool
                                 attn_mask=None,                  # type: Optional[Tensor]
                                 use_separate_proj_weight=False,  # type: bool
                                 q_proj_weight=None,              # type: Optional[Tensor]
                                 k_proj_weight=None,              # type: Optional[Tensor]
                                 v_proj_weight=None,              # type: Optional[Tensor]
                                 static_k=None,                   # type: Optional[Tensor]
                                 static_v=None                    # type: Optional[Tensor]
                                 ):
    # type: (...) -> Tuple[Tensor, Optional[Tensor]]
    r"""
    Args:
        query, key, value: map a query and a set of key-value pairs to an output.
            See "Attention Is All You Need" for more details.
        embed_dim_to_check: total dimension of the model.
        num_heads: parallel attention heads.
        in_proj_weight, in_proj_bias: input projection weight and bias.
        bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
        add_zero_attn: add a new batch of zeros to the key and
                       value sequences at dim=1.
        dropout_p: probability of an element to be zeroed.
        out_proj_weight, out_proj_bias: the output projection weight and bias.
        training: apply dropout if is ``True``.
        key_padding_mask: if provided, specified padding elements in the key will
            be ignored by the attention. This is an binary mask. When the value is True,
            the corresponding value on the attention layer will be filled with -inf.
        need_weights: output attn_output_weights.
        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
            the batches while a 3D mask allows to specify a different mask for the entries of each batch.
        use_separate_proj_weight: the function accept the proj. weights for query, key,
            and value in different forms. If false, in_proj_weight will be used, which is
            a combination of q_proj_weight, k_proj_weight, v_proj_weight.
        q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
        static_k, static_v: static key and value used for attention operators.
    Shape:
        Inputs:
        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
          the embedding dimension.
        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
          If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
          will be unchanged. If a BoolTensor is provided, the positions with the
          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
          S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
          positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
          are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
          is provided, it will be added to the attention weight.
        - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
        - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
        Outputs:
        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
          E is the embedding dimension.
        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
          L is the target sequence length, S is the source sequence length.
    """
    # if not torch.jit.is_scripting():
    #     tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
    #                 out_proj_weight, out_proj_bias)
    #     if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
    #         return handle_torch_function(
    #             multi_head_attention_forward, tens_ops, query, key, value,
    #             embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
    #             bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
    #             out_proj_bias, training=training, key_padding_mask=key_padding_mask,
    #             need_weights=need_weights, attn_mask=attn_mask,
    #             use_separate_proj_weight=use_separate_proj_weight,
    #             q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
    #             v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
    tgt_len, bsz, embed_dim = query.size()
    assert embed_dim == embed_dim_to_check
    assert key.size() == value.size()

    head_dim = embed_dim // num_heads
    assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
    scaling = float(head_dim) ** -0.5

    if not use_separate_proj_weight:
        if torch.equal(query, key) and torch.equal(key, value):
            # self-attention
            q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)

        elif torch.equal(key, value):
            # encoder-decoder attention
            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = 0
            _end = embed_dim
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            q = F.linear(query, _w, _b)

            if key is None:
                assert value is None
                k = None
                v = None
            else:

                # This is inline in_proj function with in_proj_weight and in_proj_bias
                _b = in_proj_bias
                _start = embed_dim
                _end = None
                _w = in_proj_weight[_start:, :]
                if _b is not None:
                    _b = _b[_start:]
                k, v = F.linear(key, _w, _b).chunk(2, dim=-1)

        else:
            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = 0
            _end = embed_dim
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            q = F.linear(query, _w, _b)

            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = embed_dim
            _end = embed_dim * 2
            _w = in_proj_weight[_start:_end, :]
            if _b is not None:
                _b = _b[_start:_end]
            k = F.linear(key, _w, _b)

            # This is inline in_proj function with in_proj_weight and in_proj_bias
            _b = in_proj_bias
            _start = embed_dim * 2
            _end = None
            _w = in_proj_weight[_start:, :]
            if _b is not None:
                _b = _b[_start:]
            v = F.linear(value, _w, _b)
    else:
        q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
        len1, len2 = q_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == query.size(-1)

        k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
        len1, len2 = k_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == key.size(-1)

        v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
        len1, len2 = v_proj_weight_non_opt.size()
        assert len1 == embed_dim and len2 == value.size(-1)

        if in_proj_bias is not None:
            q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
            k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
            v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
        else:
            q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
            k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
            v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
    q = q * scaling

    if attn_mask is not None:
        assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
            attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
            'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
        if attn_mask.dtype == torch.uint8:
            warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
            attn_mask = attn_mask.to(torch.bool)

        if attn_mask.dim() == 2:
            attn_mask = attn_mask.unsqueeze(0)
            if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
                raise RuntimeError('The size of the 2D attn_mask is not correct.')
        elif attn_mask.dim() == 3:
            if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
                raise RuntimeError('The size of the 3D attn_mask is not correct.')
        else:
            raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
        # attn_mask's dim is 3 now.

    # # convert ByteTensor key_padding_mask to bool
    # if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
    #     warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
    #     key_padding_mask = key_padding_mask.to(torch.bool)

    if bias_k is not None and bias_v is not None:
        if static_k is None and static_v is None:
            k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))
        else:
            assert static_k is None, "bias cannot be added to static key."
            assert static_v is None, "bias cannot be added to static value."
    else:
        assert bias_k is None
        assert bias_v is None

    q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    if k is not None:
        k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
    if v is not None:
        v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)

    if static_k is not None:
        assert static_k.size(0) == bsz * num_heads
        assert static_k.size(2) == head_dim
        k = static_k

    if static_v is not None:
        assert static_v.size(0) == bsz * num_heads
        assert static_v.size(2) == head_dim
        v = static_v

    src_len = k.size(1)

    if key_padding_mask is not None:
        assert key_padding_mask.size(0) == bsz
        assert key_padding_mask.size(1) == src_len

    if add_zero_attn:
        src_len += 1
        k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
        v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))

    attn_output_weights = torch.bmm(q, k.transpose(1, 2))
    assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_output_weights.masked_fill_(attn_mask, float('-inf'))
        else:
            attn_output_weights += attn_mask


    if key_padding_mask is not None:
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        attn_output_weights = attn_output_weights.masked_fill(
            key_padding_mask.unsqueeze(1).unsqueeze(2),
            float('-inf'),
        )
        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)

    attn_output_weights = F.softmax(
        attn_output_weights, dim=-1)
    attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)

    attn_output = torch.bmm(attn_output_weights, v)
    assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
    attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)

    if need_weights:
        # average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        return attn_output, attn_output_weights.sum(dim=1) / num_heads
    else:
        return attn_output, None

class MultiheadAttention(Module):
    r"""Allows the model to jointly attend to information
    from different representation subspaces.
    See reference: Attention Is All You Need
    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
    Args:
        embed_dim: total dimension of the model.
        num_heads: parallel attention heads.
        dropout: a Dropout layer on attn_output_weights. Default: 0.0.
        bias: add bias as module parameter. Default: True.
        add_bias_kv: add bias to the key and value sequences at dim=0.
        add_zero_attn: add a new batch of zeros to the key and
                       value sequences at dim=1.
        kdim: total number of features in key. Default: None.
        vdim: total number of features in value. Default: None.
        Note: if kdim and vdim are None, they will be set to embed_dim such that
        query, key, and value have the same number of features.
    Examples::
        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    """
    # __annotations__ = {
    #     'bias_k': torch._jit_internal.Optional[torch.Tensor],
    #     'bias_v': torch._jit_internal.Optional[torch.Tensor],
    # }
    __constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight']

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
            self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
            self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
            self.register_parameter('in_proj_weight', None)
        else:
            self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
            self.register_parameter('q_proj_weight', None)
            self.register_parameter('k_proj_weight', None)
            self.register_parameter('v_proj_weight', None)

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = Linear(embed_dim, embed_dim, bias=bias)

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
            self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self._reset_parameters()

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.)
            constant_(self.out_proj.bias, 0.)
        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def __setstate__(self, state):
        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
        if '_qkv_same_embed_dim' not in state:
            state['_qkv_same_embed_dim'] = True

        super(MultiheadAttention, self).__setstate__(state)

    def forward(self, query, key, value, key_padding_mask=None,
                need_weights=True, attn_mask=None):
        # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
        r"""
    Args:
        query, key, value: map a query and a set of key-value pairs to an output.
            See "Attention Is All You Need" for more details.
        key_padding_mask: if provided, specified padding elements in the key will
            be ignored by the attention. This is an binary mask. When the value is True,
            the corresponding value on the attention layer will be filled with -inf.
        need_weights: output attn_output_weights.
        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
            the batches while a 3D mask allows to specify a different mask for the entries of each batch.
    Shape:
        - Inputs:
        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
          the embedding dimension.
        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
          If a ByteTensor is provided, the non-zero positions will be ignored while the position
          with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
          S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
          positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
          is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
          is provided, it will be added to the attention weight.
        - Outputs:
        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
          E is the embedding dimension.
        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
          L is the target sequence length, S is the source sequence length.
        """
        if not self._qkv_same_embed_dim:
            return multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight)
        else:
            return multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask)


class Transformer(Module):
    r"""A transformer model. User is able to modify the attributes as needed. The architecture
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805)
    model with corresponding parameters.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).

    Examples::
        >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
        >>> src = torch.rand((10, 32, 512))
        >>> tgt = torch.rand((20, 32, 512))
        >>> out = transformer_model(src, tgt)

    Note: A full example to apply nn.Transformer module for the word language model is available in
    https://github.com/pytorch/examples/tree/master/word_language_model
    """

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", custom_encoder=None, custom_decoder=None):
        super(Transformer, self).__init__()

        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            encoder_norm = LayerNorm(d_model)
            self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            decoder_norm = LayerNorm(d_model)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def forward(self, src, tgt, src_mask=None, tgt_mask=None,
                memory_mask=None, src_key_padding_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor  # noqa
        r"""Take in and process masked source/target sequences.

        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
            src_mask: the additive mask for the src sequence (optional).
            tgt_mask: the additive mask for the tgt sequence (optional).
            memory_mask: the additive mask for the encoder output (optional).
            src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
            tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
            memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).

        Shape:
            - src: :math:`(S, N, E)`.
            - tgt: :math:`(T, N, E)`.
            - src_mask: :math:`(S, S)`.
            - tgt_mask: :math:`(T, T)`.
            - memory_mask: :math:`(T, S)`.
            - src_key_padding_mask: :math:`(N, S)`.
            - tgt_key_padding_mask: :math:`(N, T)`.
            - memory_key_padding_mask: :math:`(N, S)`.

            Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked
            positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
            while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
            are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
            is provided, it will be added to the attention weight. 
            [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
            the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero
            positions will be unchanged. If a BoolTensor is provided, the positions with the
            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.

            - output: :math:`(T, N, E)`.

            Note: Due to the multi-head attention architecture in the transformer model,
            the output sequence length of a transformer is same as the input sequence
            (i.e. target) length of the decode.

            where S is the source sequence length, T is the target sequence length, N is the
            batch size, E is the feature number

        Examples:
            >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
        """

        if src.size(1) != tgt.size(1):
            raise RuntimeError("the batch number of src and tgt must be equal")

        if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
            raise RuntimeError("the feature number of src and tgt must be equal to d_model")

        memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
        output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_key_padding_mask,
                              memory_key_padding_mask=memory_key_padding_mask)
        return output

    def generate_square_subsequent_mask(self, sz):
        r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
            Unmasked positions are filled with float(0.0).
        """
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)


class TransformerEncoder(Module):
    r"""TransformerEncoder is a stack of N encoder layers

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
        >>> src = torch.rand(10, 32, 512)
        >>> out = transformer_encoder(src)
    """
    __constants__ = ['norm']

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = src

        for i, mod in enumerate(self.layers):
            output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerDecoder(Module):
    r"""TransformerDecoder is a stack of N decoder layers

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
        >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
        >>> memory = torch.rand(10, 32, 512)
        >>> tgt = torch.rand(20, 32, 512)
        >>> out = transformer_decoder(tgt, memory)
    """
    __constants__ = ['norm']

    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, tgt, memory, memory2=None, tgt_mask=None,
                memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None,
                memory_key_padding_mask=None, memory_key_padding_mask2=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        r"""Pass the inputs (and mask) through the decoder layer in turn.

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequence from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = tgt

        for mod in self.layers:
            output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask,
                         memory_mask=memory_mask, memory_mask2=memory_mask2,
                         tgt_key_padding_mask=tgt_key_padding_mask,
                         memory_key_padding_mask=memory_key_padding_mask,
                         memory_key_padding_mask2=memory_key_padding_mask2)

        if self.norm is not None:
            output = self.norm(output)

        return output

class TransformerEncoderLayer(Module):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of intermediate layer, relu or gelu (default=relu).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> src = torch.rand(10, 32, 512)
        >>> out = encoder_layer(src)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, 
                 activation="relu", debug=False):
        super(TransformerEncoderLayer, self).__init__()
        self.debug = debug
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerEncoderLayer, self).__setstate__(state)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        src2, attn = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)
        if self.debug: self.attn = attn
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        
        return src


class TransformerDecoderLayer(Module):
    r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of intermediate layer, relu or gelu (default=relu).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
        >>> memory = torch.rand(10, 32, 512)
        >>> tgt = torch.rand(20, 32, 512)
        >>> out = decoder_layer(tgt, memory)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, 
                 activation="relu", self_attn=True, siamese=False, debug=False):
        super(TransformerDecoderLayer, self).__init__()
        self.has_self_attn, self.siamese = self_attn, siamese
        self.debug = debug
        if self.has_self_attn:
            self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
            self.norm1 = LayerNorm(d_model)
            self.dropout1 = Dropout(dropout)
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout2 = Dropout(dropout)
        self.dropout3 = Dropout(dropout)
        if self.siamese:
            self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerDecoderLayer, self).__setstate__(state)

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None,
                memory2=None, memory_mask2=None, memory_key_padding_mask2=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        r"""Pass the inputs (and mask) through the decoder layer.

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequence from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        if self.has_self_attn:
            tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                                key_padding_mask=tgt_key_padding_mask)
            tgt = tgt + self.dropout1(tgt2)
            tgt = self.norm1(tgt)
            if self.debug: self.attn = attn
        tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)
        if self.debug: self.attn2 = attn2

        if self.siamese:
            tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2,
                            key_padding_mask=memory_key_padding_mask2)
            tgt = tgt + self.dropout2(tgt3)
            if self.debug: self.attn3 = attn3

        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        
        return tgt


def _get_clones(module, N):
    return ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))


class PositionalEncoding(nn.Module):
    r"""Inject some information about the relative or absolute position of the tokens
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """

        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


if __name__ == '__main__':
    transformer_model = Transformer(nhead=16, num_encoder_layers=12)
    src = torch.rand((10, 32, 512))
    tgt = torch.rand((20, 32, 512))
    out = transformer_model(src, tgt)
    print(out)