Spaces:
Runtime error
Runtime error
File size: 12,787 Bytes
f7172b2 5682826 f7172b2 66b8021 f7172b2 93f7525 773737a f7172b2 a93f094 880820c d5d564a 4208fde f7172b2 171be63 d440983 69d0bef d8b2372 ef01944 f7172b2 eb75f21 66b8021 f7172b2 dd115cf ef01944 f7172b2 81c330c a3e4e43 f7172b2 523d9c4 f7172b2 81c330c f7172b2 22efaa0 beb5508 32fb2ab f7172b2 dd115cf 69d0bef dd115cf 79865e9 2476b8a dd115cf 03fa056 1852f2a a4afd63 1852f2a 72fb9e5 dd115cf 62026ce 81c330c e4e5ceb dd115cf bafdce5 c296508 dd115cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import HuggingFacePipeline
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.document_loaders import (
CSVLoader,
DirectoryLoader,
GitLoader,
NotebookLoader,
OnlinePDFLoader,
PythonLoader,
TextLoader,
UnstructuredFileLoader,
UnstructuredHTMLLoader,
UnstructuredPDFLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
PyPDFLoader,
UnstructuredMarkdownLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredPowerPointLoader,
UnstructuredODTLoader,
NotebookLoader,
UnstructuredFileLoader
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
pipeline,
GenerationConfig,
TextStreamer,
pipeline
)
from langchain.llms import HuggingFaceHub
import torch
from transformers import BitsAndBytesConfig
import os
from langchain.llms import CTransformers
import streamlit as st
from langchain.document_loaders.base import BaseLoader
from langchain.schema import Document
import gradio as gr
import tempfile
FILE_LOADER_MAPPING = {
"csv": (CSVLoader, {"encoding": "utf-8"}),
"doc": (UnstructuredWordDocumentLoader, {}),
"docx": (UnstructuredWordDocumentLoader, {}),
"epub": (UnstructuredEPubLoader, {}),
"html": (UnstructuredHTMLLoader, {}),
"md": (UnstructuredMarkdownLoader, {}),
"odt": (UnstructuredODTLoader, {}),
"pdf": (PyPDFLoader, {}),
"ppt": (UnstructuredPowerPointLoader, {}),
"pptx": (UnstructuredPowerPointLoader, {}),
"txt": (TextLoader, {"encoding": "utf8"}),
"ipynb": (NotebookLoader, {}),
"py": (PythonLoader, {}),
# Add more mappings for other file extensions and loaders as needed
}
def load_model():
# model_path=HuggingFaceHub(repo_id="vilsonrodrigues/falcon-7b-instruct-sharded")
# if not os.path.exists(model_path):
# raise FileNotFoundError(f"No model file found at {model_path}")
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_use_double_quant=True,
# )
# model_4bit = AutoModelForCausalLM.from_pretrained(
# model_path,
# device_map="auto",
# quantization_config=quantization_config,
# )
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# pipeline = pipeline(
# "text-generation",
# model=model_4bit,
# tokenizer=tokenizer,
# use_cache=True,
# device_map="auto",
# max_length=700,
# do_sample=True,
# top_k=5,
# num_return_sequences=1,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.eos_token_id,
# )
# llm = HuggingFacePipeline(pipeline=pipeline)
# llm = CTransformers(
# model=HuggingFaceHub(repo_id="TheBloke/Llama-2-7B-Chat-GGML", model_kwargs={"temperature":0.5, "max_length":512})
# # model_type=model_type,
# # max_new_tokens=max_new_tokens, # type: ignore
# # temperature=temperature, # type: ignore
# )
llm = CTransformers(
model="TheBloke/Llama-2-13B-chat-GGUF",
callbacks=[StreamingStdOutCallbackHandler()]
# model_type=model_type,
# max_new_tokens=max_new_tokens, # type: ignore
# temperature=temperature, # type: ignore
)
return llm
# def load_document(
# # file_path: str,
# uploaded_files: list,
# mapping: dict = FILE_LOADER_MAPPING,
# default_loader: BaseLoader = UnstructuredFileLoader,
# ) -> Document:
# loaded_documents = []
# for uploaded_file in uploaded_files:
# # Choose loader from mapping, load default if no match found
# # ext = "." + uploaded_files.rsplit(".", 1)[-1]
# ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
# if ext in mapping:
# loader_class, loader_args = mapping[ext]
# loader = loader_class(uploaded_file, **loader_args)
# else:
# loader = default_loader(uploaded_file)
# loaded_documents.extend(loader.load())
# return loaded_documents
def create_vector_database(loaded_documents):
# DB_DIR: str = os.path.join(ABS_PATH, "db")
"""
Creates a vector database using document loaders and embeddings.
This function loads data from PDF, markdown and text files in the 'data/' directory,
splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
and finally persists the embeddings into a Chroma vector database.
"""
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
chunked_documents = text_splitter.split_documents(loaded_documents)
# Initialize HuggingFace embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
# Create and persist a Chroma vector database from the chunked documents
db = Chroma.from_documents(
documents=chunked_documents,
embedding=embeddings,
# persist_directory=DB_DIR,
)
db.persist()
return db
def set_custom_prompt_condense():
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
return CONDENSE_QUESTION_PROMPT
def set_custom_prompt():
"""
Prompt template for retrieval for each vectorstore
"""
prompt_template = """<Instructions>
Important:
Answer with the facts listed in the list of sources below. If there isn't enough information below, say you don't know.
If asking a clarifying question to the user would help, ask the question.
ALWAYS return a "SOURCES" part in your answer, except for small-talk conversations.
Question: {question}
{context}
Question: {question}
Helpful Answer:
---------------------------
---------------------------
Sources:
"""
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
return prompt
def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db):
"""
Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.
This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
and returns this chain. The retriever is set up to return the top 3 results (k=3).
Args:
llm (any): The language model to be used in the RetrievalQA.
prompt (str): The prompt to be used in the chain type.
db (any): The database to be used as the
retriever.
Returns:
ConversationalRetrievalChain: The initialized conversational chain.
"""
memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', max_token_limit=1000)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True,
combine_docs_chain_kwargs={"prompt": prompt},
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
memory=memory,
)
return chain
def create_retrieval_qa_bot(loaded_documents):
# if not os.path.exists(persist_dir):
# raise FileNotFoundError(f"No directory found at {persist_dir}")
try:
llm = load_model() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}")
try:
prompt = set_custom_prompt() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get prompt: {str(e)}")
try:
CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get condense prompt: {str(e)}")
try:
db = create_vector_database(loaded_documents) # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get database: {str(e)}")
try:
qa = create_chain(
llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
) # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to create retrieval QA chain: {str(e)}")
return qa
def retrieve_bot_answer(query, loaded_documents):
"""
Retrieves the answer to a given query using a QA bot.
This function creates an instance of a QA bot, passes the query to it,
and returns the bot's response.
Args:
query (str): The question to be answered by the QA bot.
Returns:
dict: The QA bot's response, typically a dictionary with response details.
"""
qa_bot_instance = create_retrieval_qa_bot(loaded_documents)
bot_response = qa_bot_instance({"question": query})
# Check if the 'answer' key exists in the bot_response dictionary
if 'answer' in bot_response:
answer = bot_response['answer']
return answer
else:
raise KeyError("Expected 'answer' key in bot_response, but it was not found.")
# from your_module import load_model, set_custom_prompt, set_custom_prompt_condense, create_vector_database, retrieve_bot_answer
def main():
st.title("Docuverse")
# Upload files
uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
loaded_documents = []
if uploaded_files:
# Create a temporary directory
with tempfile.TemporaryDirectory() as td:
# Move the uploaded files to the temporary directory and process them
for uploaded_file in uploaded_files:
st.write(f"Uploaded: {uploaded_file.name}")
ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
st.write(f"Uploaded: {ext}")
# Check if the extension is in FILE_LOADER_MAPPING
if ext in FILE_LOADER_MAPPING:
loader_class, loader_args = FILE_LOADER_MAPPING[ext]
st.write(f"loader_class: {loader_class}")
# Save the uploaded file to the temporary directory
file_path = os.path.join(td, uploaded_file.name)
with open(file_path, 'wb') as temp_file:
temp_file.write(uploaded_file.read())
# Use Langchain loader to process the file
loader = loader_class(file_path, **loader_args)
loaded_documents.extend(loader.load())
else:
st.warning(f"Unsupported file extension: {ext}")
st.write(f"loaded_documents: {loaded_documents}")
st.write("Chat with the Document:")
query = st.text_input("Ask a question:")
if st.button("Get Answer"):
if query:
# Load model, set prompts, create vector database, and retrieve answer
try:
llm = load_model()
prompt = set_custom_prompt()
CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
db = create_vector_database(loaded_documents)
st.write(f"db: {db}")
response = retrieve_bot_answer(query,loaded_documents)
st.write(f"response: {response}")
# Display bot response
st.write("Bot Response:")
st.write(response)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.warning("Please enter a question.")
if __name__ == "__main__":
main() |