File size: 12,787 Bytes
f7172b2
 
 
5682826
f7172b2
 
 
 
66b8021
f7172b2
 
 
 
 
 
 
 
 
 
 
 
 
 
93f7525
 
 
 
 
 
773737a
 
f7172b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93f094
880820c
d5d564a
4208fde
f7172b2
171be63
d440983
 
 
 
 
 
 
 
 
 
 
 
 
69d0bef
 
 
d8b2372
ef01944
f7172b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb75f21
66b8021
f7172b2
 
 
 
 
 
dd115cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef01944
 
f7172b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c330c
a3e4e43
 
f7172b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523d9c4
f7172b2
 
 
 
 
 
 
 
 
 
 
 
81c330c
f7172b2
 
 
 
 
 
 
 
 
 
 
 
22efaa0
beb5508
32fb2ab
 
 
 
 
 
f7172b2
 
 
 
dd115cf
69d0bef
dd115cf
 
 
 
79865e9
2476b8a
dd115cf
03fa056
1852f2a
 
 
 
 
 
 
 
 
 
a4afd63
1852f2a
 
 
 
 
 
 
 
 
 
 
 
72fb9e5
dd115cf
 
 
 
 
 
 
 
 
 
 
62026ce
81c330c
e4e5ceb
dd115cf
 
 
 
 
 
 
bafdce5
c296508
dd115cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import HuggingFacePipeline
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.document_loaders import (
    CSVLoader,
    DirectoryLoader,
    GitLoader,
    NotebookLoader,
    OnlinePDFLoader,
    PythonLoader,
    TextLoader,
    UnstructuredFileLoader,
    UnstructuredHTMLLoader,
    UnstructuredPDFLoader,
    UnstructuredWordDocumentLoader,
    WebBaseLoader,
    PyPDFLoader,
    UnstructuredMarkdownLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredPowerPointLoader,
    UnstructuredODTLoader,
    NotebookLoader,
    UnstructuredFileLoader
)
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    pipeline,
    GenerationConfig,
    TextStreamer,
    pipeline
)
from langchain.llms import HuggingFaceHub
import torch
from transformers import BitsAndBytesConfig
import os
from langchain.llms import CTransformers
import streamlit as st
from langchain.document_loaders.base import BaseLoader
from langchain.schema import Document
import gradio as gr
import tempfile

FILE_LOADER_MAPPING = {
    "csv": (CSVLoader, {"encoding": "utf-8"}),
    "doc": (UnstructuredWordDocumentLoader, {}),
    "docx": (UnstructuredWordDocumentLoader, {}),
    "epub": (UnstructuredEPubLoader, {}),
    "html": (UnstructuredHTMLLoader, {}),
    "md": (UnstructuredMarkdownLoader, {}),
    "odt": (UnstructuredODTLoader, {}),
    "pdf": (PyPDFLoader, {}),
    "ppt": (UnstructuredPowerPointLoader, {}),
    "pptx": (UnstructuredPowerPointLoader, {}),
    "txt": (TextLoader, {"encoding": "utf8"}),
    "ipynb": (NotebookLoader, {}),
    "py": (PythonLoader, {}),
    # Add more mappings for other file extensions and loaders as needed
}



def load_model():
    # model_path=HuggingFaceHub(repo_id="vilsonrodrigues/falcon-7b-instruct-sharded")

    # if not os.path.exists(model_path):
    #     raise FileNotFoundError(f"No model file found at {model_path}")

    # quantization_config = BitsAndBytesConfig(
    #   load_in_4bit=True,
    #   bnb_4bit_compute_dtype=torch.float16,
    #   bnb_4bit_quant_type="nf4",
    #   bnb_4bit_use_double_quant=True,
    # )

    # model_4bit = AutoModelForCausalLM.from_pretrained(
    #     model_path,
    #     device_map="auto",
    #     quantization_config=quantization_config,
    #     )

    # tokenizer = AutoTokenizer.from_pretrained(model_path)

    # pipeline = pipeline(
    #     "text-generation",
    #     model=model_4bit,
    #     tokenizer=tokenizer,
    #     use_cache=True,
    #     device_map="auto",
    #     max_length=700,
    #     do_sample=True,
    #     top_k=5,
    #     num_return_sequences=1,
    #     eos_token_id=tokenizer.eos_token_id,
    #     pad_token_id=tokenizer.eos_token_id,
    # )

    # llm = HuggingFacePipeline(pipeline=pipeline)
    # llm = CTransformers(
    #     model=HuggingFaceHub(repo_id="TheBloke/Llama-2-7B-Chat-GGML", model_kwargs={"temperature":0.5, "max_length":512})
    #     # model_type=model_type,
    #     # max_new_tokens=max_new_tokens,  # type: ignore
    #     # temperature=temperature,  # type: ignore
    # )
    llm = CTransformers(
        model="TheBloke/Llama-2-13B-chat-GGUF",
        callbacks=[StreamingStdOutCallbackHandler()]
        # model_type=model_type,
        # max_new_tokens=max_new_tokens,  # type: ignore
        # temperature=temperature,  # type: ignore
    )
    return llm

# def load_document(
#     # file_path: str,
#     uploaded_files: list,
#     mapping: dict = FILE_LOADER_MAPPING,
#     default_loader: BaseLoader = UnstructuredFileLoader,
# ) -> Document:
#     loaded_documents = []
#     for uploaded_file in uploaded_files:
#         # Choose loader from mapping, load default if no match found
#         # ext = "." + uploaded_files.rsplit(".", 1)[-1]
#         ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
#         if ext in mapping:
#             loader_class, loader_args = mapping[ext]
#             loader = loader_class(uploaded_file, **loader_args)
#         else:
#             loader = default_loader(uploaded_file)
#         loaded_documents.extend(loader.load())
#     return loaded_documents

def create_vector_database(loaded_documents):
    # DB_DIR: str = os.path.join(ABS_PATH, "db")
    """
    Creates a vector database using document loaders and embeddings.

    This function loads data from PDF, markdown and text files in the 'data/' directory,
    splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
    and finally persists the embeddings into a Chroma vector database.

    """

    # Split loaded documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
    chunked_documents = text_splitter.split_documents(loaded_documents)

    # Initialize HuggingFace embeddings
    embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2"
    )

    # Create and persist a Chroma vector database from the chunked documents
    db = Chroma.from_documents(
        documents=chunked_documents,
        embedding=embeddings,
        # persist_directory=DB_DIR,
    )
    db.persist()
    return db

def set_custom_prompt_condense():
    _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.

    Chat History:
    {chat_history}
    Follow Up Input: {question}
    Standalone question:"""
    CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
    return CONDENSE_QUESTION_PROMPT

def set_custom_prompt():
    """
    Prompt template for retrieval for each vectorstore
    """


    prompt_template = """<Instructions>
    Important:
    Answer with the facts listed in the list of sources below. If there isn't enough information below, say you don't know.
    If asking a clarifying question to the user would help, ask the question.
    ALWAYS return a "SOURCES" part in your answer, except for small-talk conversations.

    Question: {question}

    {context}


    Question: {question}
    Helpful Answer:

    ---------------------------
    ---------------------------
    Sources:
    """

    prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
    return prompt

def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db):
    """
    Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.

    This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
    and returns this  chain. The retriever is set up to return the top 3 results (k=3).

    Args:
        llm (any): The language model to be used in the RetrievalQA.
        prompt (str): The prompt to be used in the chain type.
        db (any): The database to be used as the 
        retriever.

    Returns:
        ConversationalRetrievalChain: The initialized conversational chain.
    """
    memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', max_token_limit=1000)
    chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        chain_type="stuff",
        retriever=db.as_retriever(search_kwargs={"k": 3}),
        return_source_documents=True,
        combine_docs_chain_kwargs={"prompt": prompt},
        condense_question_prompt=CONDENSE_QUESTION_PROMPT,
        memory=memory,
    )
    return chain

def create_retrieval_qa_bot(loaded_documents):
    # if not os.path.exists(persist_dir):
    #       raise FileNotFoundError(f"No directory found at {persist_dir}")

    try:
        llm = load_model()  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to load model: {str(e)}")

    try:
        prompt = set_custom_prompt()  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to get prompt: {str(e)}")

    try:
        CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to get condense prompt: {str(e)}")

    try:
        db = create_vector_database(loaded_documents)  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to get database: {str(e)}")

    try:
        qa = create_chain(
            llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
        )  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to create retrieval QA chain: {str(e)}")

    return qa

def retrieve_bot_answer(query, loaded_documents):
    """
    Retrieves the answer to a given query using a QA bot.

    This function creates an instance of a QA bot, passes the query to it,
    and returns the bot's response.

    Args:
        query (str): The question to be answered by the QA bot.

    Returns:
        dict: The QA bot's response, typically a dictionary with response details.
    """
    qa_bot_instance = create_retrieval_qa_bot(loaded_documents)
    bot_response = qa_bot_instance({"question": query})
    # Check if the 'answer' key exists in the bot_response dictionary
    if 'answer' in bot_response:
        answer = bot_response['answer']
        return answer
    else:
        raise KeyError("Expected 'answer' key in bot_response, but it was not found.")


# from your_module import load_model, set_custom_prompt, set_custom_prompt_condense, create_vector_database, retrieve_bot_answer

def main():
   
    st.title("Docuverse")

    # Upload files
    uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
    loaded_documents = []

    if uploaded_files:
        # Create a temporary directory
        with tempfile.TemporaryDirectory() as td:
            # Move the uploaded files to the temporary directory and process them
            for uploaded_file in uploaded_files:
                st.write(f"Uploaded: {uploaded_file.name}")
                ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
                st.write(f"Uploaded: {ext}")

                # Check if the extension is in FILE_LOADER_MAPPING
                if ext in FILE_LOADER_MAPPING:
                    loader_class, loader_args = FILE_LOADER_MAPPING[ext]
                    st.write(f"loader_class: {loader_class}")

                    # Save the uploaded file to the temporary directory
                    file_path = os.path.join(td, uploaded_file.name)
                    with open(file_path, 'wb') as temp_file:
                        temp_file.write(uploaded_file.read())

                    # Use Langchain loader to process the file
                    loader = loader_class(file_path, **loader_args)
                    loaded_documents.extend(loader.load())
                else:
                    st.warning(f"Unsupported file extension: {ext}")

        st.write(f"loaded_documents: {loaded_documents}")  
        st.write("Chat with the Document:")
        query = st.text_input("Ask a question:")

        if st.button("Get Answer"):
            if query:
                # Load model, set prompts, create vector database, and retrieve answer
                try:
                    llm = load_model()
                    prompt = set_custom_prompt()
                    CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
                    db = create_vector_database(loaded_documents)
                    st.write(f"db: {db}") 
                    response = retrieve_bot_answer(query,loaded_documents)
                    st.write(f"response: {response}") 
                    # Display bot response
                    st.write("Bot Response:")
                    st.write(response)
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
            else:
                st.warning("Please enter a question.")

if __name__ == "__main__":
    main()