File size: 2,058 Bytes
fb0046b
 
 
 
edc7eb5
5a8da99
edc7eb5
6d80c7e
5a8da99
edc7eb5
 
 
5a8da99
edc7eb5
 
 
 
5a8da99
edc7eb5
5a8da99
edc7eb5
 
 
 
 
 
 
 
 
 
 
 
5a8da99
fb0046b
5a8da99
 
 
 
fb0046b
 
 
 
 
c8e72b8
fb0046b
c8e72b8
fb0046b
 
5a8da99
fb0046b
5a8da99
fb0046b
c8e72b8
fb0046b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
# from PIL import Image
from transformers.utils import logging
from transformers import BlipForConditionalGeneration, AutoProcessor
from transformers import pipeline

pipe = pipeline("image-to-text",
                model="Salesforce/blip-image-captioning-base")

def launch(input):
    out = pipe(input)
    return out[0]['generated_text']

iface = gr.Interface(launch,
                     inputs=gr.Image(type='pil'),
                     outputs="text")
iface.launch()

# logging.set_verbosity_error()

# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

# def caption_image(image):
#     inputs = processor(image, return_tensors="pt")
#     out = model.generate(**inputs)
#     caption = processor.decode(out[0], skip_special_tokens=True)
#     return caption


# iface = gr.Interface(fn=caption_image, inputs=["image"], outputs="textbox")
# iface.launch()
# gr.Interface(caption_image, gr.inputs.Image(), "text").launch()
# gr.Interface(caption_image, image_input, caption_output).launch()




# import streamlit as st
# # from PIL import Image
# from transformers.utils import logging
# from transformers import BlipForConditionalGeneration, AutoProcessor
# import torch

# logging.set_verbosity_error()

# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

# st.title("Image Captioning")

# uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

# if uploaded_file is not None:
#     image = Image.open(uploaded_file)
#     st.image(image, caption="Uploaded Image", use_column_width=True)
#     st.write("")
#     st.write("Generating caption...")
#     inputs = processor(image, return_tensors="pt")
#     out = model.generate(**inputs)
#     caption = processor.decode(out[0], skip_special_tokens=True)
#     st.write("Caption:", caption)