File size: 16,854 Bytes
25f639b a00e62a 985f0ab 25f639b b2a394a 25f639b b2a394a 25f639b b2a394a 25f639b 0e77c95 b2a394a 25f639b 96d88aa 25f639b 96d88aa 25f639b 877547f 96d88aa 85a9639 96d88aa 25f639b 96d88aa 25f639b d9b4100 25f639b c249782 25f639b 59a15ba f18103b 25f639b f18103b 25f639b 467d298 25f639b fa817a6 25f639b f18103b 85a9639 25f639b f18103b 25f639b b430a6e a00e62a 25f639b f2b779f 25f639b 4c2398a 25f639b 877547f 1f78d9c 25f639b f64563b 25f639b f18103b 25f639b f18103b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chains.question_answering import load_qa_chain
# from langchain.chains import RetrievalQA
# from langchain.memory import ConversationBufferMemory
# from langchain.memory import ConversationTokenBufferMemory
# from langchain.llms import HuggingFacePipeline
# # from langchain import PromptTemplate
# from langchain.prompts import PromptTemplate
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# from langchain.vectorstores import Chroma
# from chromadb.utils import embedding_functions
# from langchain.embeddings import SentenceTransformerEmbeddings
# from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.document_loaders import (
CSVLoader,
DirectoryLoader,
GitLoader,
NotebookLoader,
OnlinePDFLoader,
PythonLoader,
TextLoader,
UnstructuredFileLoader,
UnstructuredHTMLLoader,
UnstructuredPDFLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
PyPDFLoader,
UnstructuredMarkdownLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredPowerPointLoader,
UnstructuredODTLoader,
NotebookLoader,
UnstructuredFileLoader
)
# from transformers import (
# AutoModelForCausalLM,
# AutoTokenizer,
# StoppingCriteria,
# StoppingCriteriaList,
# pipeline,
# GenerationConfig,
# TextStreamer,
# pipeline
# )
# from langchain.llms import HuggingFaceHub
import torch
# from transformers import BitsAndBytesConfig
import os
# from langchain.llms import CTransformers
import streamlit as st
# from langchain.document_loaders.base import BaseLoader
# from langchain.schema import Document
# import gradio as gr
import tempfile
import timeit
import textwrap
# from chromadb.utils import embedding_functions
# from tqdm import tqdm
# tqdm(disable=True, total=0) # initialise internal lock
# tqdm.write("test")
from langchain import PromptTemplate, LLMChain
from langchain.llms import CTransformers
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceBgeEmbeddings
from io import BytesIO
from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores import FAISS
# def load_model():
# config = {'max_new_tokens': 1024,
# 'repetition_penalty': 1.1,
# 'temperature': 0.1,
# 'top_k': 50,
# 'top_p': 0.9,
# 'stream': True,
# 'threads': int(os.cpu_count() / 2)
# }
# llm = CTransformers(
# model = "TheBloke/zephyr-7B-beta-GGUF",
# model_file = "zephyr-7b-beta.Q4_0.gguf",
# callbacks=[StreamingStdOutCallbackHandler()],
# lib="avx2", #for CPU use
# **config
# # model_type=model_type,
# # max_new_tokens=max_new_tokens, # type: ignore
# # temperature=temperature, # type: ignore
# )
# return llm
# def create_vector_database(loaded_documents):
# # DB_DIR: str = os.path.join(ABS_PATH, "db")
# """
# Creates a vector database using document loaders and embeddings.
# This function loads data from PDF, markdown and text files in the 'data/' directory,
# splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
# and finally persists the embeddings into a Chroma vector database.
# """
# # Split loaded documents into chunks
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=30, length_function = len)
# chunked_documents = text_splitter.split_documents(loaded_documents)
# # embeddings = HuggingFaceEmbeddings(
# # model_name="sentence-transformers/all-MiniLM-L6-v2"
# # # model_name = "sentence-transformers/all-mpnet-base-v2"
# # )
# embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
# # embeddings = HuggingFaceBgeEmbeddings(
# # model_name = "BAAI/bge-large-en"
# # )
# # model_name = "BAAI/bge-large-en"
# # model_kwargs = {'device': 'cpu'}
# # encode_kwargs = {'normalize_embeddings': False}
# # embeddings = HuggingFaceBgeEmbeddings(
# # model_name=model_name,
# # model_kwargs=model_kwargs,
# # encode_kwargs=encode_kwargs
# # )
# persist_directory = 'db'
# # Create and persist a Chroma vector database from the chunked documents
# db = Chroma.from_documents(
# documents=chunked_documents,
# embedding=embeddings,
# persist_directory=persist_directory
# # persist_directory=DB_DIR,
# )
# db.persist()
# # db = Chroma(persist_directory=persist_directory,
# # embedding_function=embedding)
# return db
# def set_custom_prompt():
# """
# Prompt template for retrieval for each vectorstore
# """
# prompt_template = """Use the following pieces of information to answer the user's question.
# If you don't know the answer, just say that you don't know, don't try to make up an answer.
# Context: {context}
# Question: {question}
# Only return the helpful answer below and nothing else.
# Helpful answer:
# """
# prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
# return prompt
# def create_chain(llm, prompt, db):
# """
# Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.
# This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
# and returns this chain. The retriever is set up to return the top 3 results (k=3).
# Args:
# llm (any): The language model to be used in the RetrievalQA.
# prompt (str): The prompt to be used in the chain type.
# db (any): The database to be used as the
# retriever.
# Returns:
# ConversationalRetrievalChain: The initialized conversational chain.
# """
# memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', output_key='answer')
# # chain = ConversationalRetrievalChain.from_llm(
# # llm=llm,
# # chain_type="stuff",
# # retriever=db.as_retriever(search_kwargs={"k": 3}),
# # return_source_documents=True,
# # max_tokens_limit=256,
# # combine_docs_chain_kwargs={"prompt": prompt},
# # condense_question_prompt=CONDENSE_QUESTION_PROMPT,
# # memory=memory,
# # )
# # chain = RetrievalQA.from_chain_type(llm=llm,
# # chain_type='stuff',
# # retriever=db.as_retriever(search_kwargs={'k': 3}),
# # return_source_documents=True,
# # chain_type_kwargs={'prompt': prompt}
# # )
# chain = RetrievalQA.from_chain_type(llm=llm,
# chain_type='stuff',
# retriever=db.as_retriever(search_kwargs={'k': 3}),
# return_source_documents=True
# )
# return chain
# def create_retrieval_qa_bot(loaded_documents):
# # if not os.path.exists(persist_dir):
# # raise FileNotFoundError(f"No directory found at {persist_dir}")
# try:
# llm = load_model() # Assuming this function exists and works as expected
# except Exception as e:
# raise Exception(f"Failed to load model: {str(e)}")
# try:
# prompt = set_custom_prompt() # Assuming this function exists and works as expected
# except Exception as e:
# raise Exception(f"Failed to get prompt: {str(e)}")
# # try:
# # CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense() # Assuming this function exists and works as expected
# # except Exception as e:
# # raise Exception(f"Failed to get condense prompt: {str(e)}")
# try:
# db = create_vector_database(loaded_documents) # Assuming this function exists and works as expected
# except Exception as e:
# raise Exception(f"Failed to get database: {str(e)}")
# try:
# # qa = create_chain(
# # llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
# # ) # Assuming this function exists and works as expected
# qa = create_chain(
# llm=llm, prompt=prompt, db=db
# ) # Assuming this function exists and works as expected
# except Exception as e:
# raise Exception(f"Failed to create retrieval QA chain: {str(e)}")
# return qa
# def wrap_text_preserve_newlines(text, width=110):
# # Split the input text into lines based on newline characters
# lines = text.split('\n')
# # Wrap each line individually
# wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# # Join the wrapped lines back together using newline characters
# wrapped_text = '\n'.join(wrapped_lines)
# return wrapped_text
# def retrieve_bot_answer(query, loaded_documents):
# """
# Retrieves the answer to a given query using a QA bot.
# This function creates an instance of a QA bot, passes the query to it,
# and returns the bot's response.
# Args:
# query (str): The question to be answered by the QA bot.
# Returns:
# dict: The QA bot's response, typically a dictionary with response details.
# """
# qa_bot_instance = create_retrieval_qa_bot(loaded_documents)
# # bot_response = qa_bot_instance({"question": query})
# bot_response = qa_bot_instance({"query": query})
# # Check if the 'answer' key exists in the bot_response dictionary
# # if 'answer' in bot_response:
# # # answer = bot_response['answer']
# # return bot_response
# # else:
# # raise KeyError("Expected 'answer' key in bot_response, but it was not found.")
# # result = bot_response['answer']
# # result = bot_response['result']
# # sources = []
# # for source in bot_response["source_documents"]:
# # sources.append(source.metadata['source'])
# # return result, sources
# result = wrap_text_preserve_newlines(bot_response['result'])
# for source in bot_response["source_documents"]:
# sources.append(source.metadata['source'])
# return result, sources
def main():
FILE_LOADER_MAPPING = {
"csv": (CSVLoader, {"encoding": "utf-8"}),
"doc": (UnstructuredWordDocumentLoader, {}),
"docx": (UnstructuredWordDocumentLoader, {}),
"epub": (UnstructuredEPubLoader, {}),
"html": (UnstructuredHTMLLoader, {}),
"md": (UnstructuredMarkdownLoader, {}),
"odt": (UnstructuredODTLoader, {}),
"pdf": (PyPDFLoader, {}),
"ppt": (UnstructuredPowerPointLoader, {}),
"pptx": (UnstructuredPowerPointLoader, {}),
"txt": (TextLoader, {"encoding": "utf8"}),
"ipynb": (NotebookLoader, {}),
"py": (PythonLoader, {}),
# Add more mappings for other file extensions and loaders as needed
}
st.title("Docuverse")
# Upload files
uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
loaded_documents = []
if uploaded_files:
# Create a temporary directory
with tempfile.TemporaryDirectory() as td:
# Move the uploaded files to the temporary directory and process them
for uploaded_file in uploaded_files:
st.write(f"Uploaded: {uploaded_file.name}")
ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
st.write(f"Uploaded: {ext}")
# Check if the extension is in FILE_LOADER_MAPPING
if ext in FILE_LOADER_MAPPING:
loader_class, loader_args = FILE_LOADER_MAPPING[ext]
# st.write(f"loader_class: {loader_class}")
# Save the uploaded file to the temporary directory
file_path = os.path.join(td, uploaded_file.name)
with open(file_path, 'wb') as temp_file:
temp_file.write(uploaded_file.read())
# Use Langchain loader to process the file
loader = loader_class(file_path, **loader_args)
loaded_documents.extend(loader.load())
else:
st.warning(f"Unsupported file extension: {ext}")
# st.write(f"loaded_documents: {loaded_documents}")
st.write("Chat with the Document:")
query = st.text_input("Ask a question:")
if st.button("Get Answer"):
if query:
# Load model, set prompts, create vector database, and retrieve answer
try:
start = timeit.default_timer()
config = {
'max_new_tokens': 1024,
'repetition_penalty': 1.1,
'temperature': 0.1,
'top_k': 50,
'top_p': 0.9,
'stream': True,
'threads': int(os.cpu_count() / 2)
}
llm = CTransformers(
model = "TheBloke/zephyr-7B-beta-GGUF",
model_file = "zephyr-7b-beta.Q4_0.gguf",
model_type="mistral",
lib="avx2", #for CPU use
**config
)
st.write("LLM Initialized:")
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
# model_kwargs={"device": "cpu"})
# llm = load_model()
# prompt = set_custom_prompt()
# CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
# db = create_vector_database(loaded_documents)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=30, length_function = len)
chunked_documents = text_splitter.split_documents(loaded_documents)
persist_directory = 'db'
# Create and persist a Chroma vector database from the chunked documents
db = FAISS.from_documents(chunked_documents, embeddings)
# db = Chroma.from_documents(documents=chunked_documents,embedding=embeddings,persist_directory=persist_directory)
# db.persist()
retriever = db.as_retriever(search_kwargs={"k":1})
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, verbose=True)
bot_response = qa(query)
lines = bot_response['result'].split('\n')
wrapped_lines = [textwrap.fill(line, width=50) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
for source in bot_response["source_documents"]:
sources = source.metadata['source']
end = timeit.default_timer()
st.write("Elapsed time:")
st.write(end - start)
# st.write(f"response: {response}")
# Display bot response
st.write("Bot Response:")
st.write(wrapped_text)
st.write(sources)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.warning("Please enter a question.")
if __name__ == "__main__":
main()
|