File size: 4,105 Bytes
4c8c217
52b8278
74d32cc
0ff2378
 
 
 
 
 
1dd3a02
 
 
 
986e2b7
 
 
0ff2378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd3a02
0ff2378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885ec28
b1d9a7f
 
885ec28
 
0ff2378
4c8c217
1dd3a02
 
b0d0303
4c8c217
 
c46950c
6b80b65
52b8278
 
1572555
52b8278
 
0ff2378
 
 
 
 
 
 
 
986e2b7
 
 
 
 
52b8278
 
 
 
8c67f60
 
52b8278
 
 
 
 
 
 
 
 
 
6ad6f7e
 
 
 
6b80b65
4c8c217
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain


def get_response(user_input):
    return "I dont know"

def get_vector_store_from_url(url):
    loader = WebBaseLoader(url)
    document = loader.load()
    
    # split the document into chunks
    text_splitter = RecursiveCharacterTextSplitter()
    document_chunks = text_splitter.split_documents(document)
    
    # create a vectorstore from the chunks
    vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())

    return vector_store
    

def get_context_retriever_chain(vector_store):
    llm = ChatOpenAI()
    
    retriever = vector_store.as_retriever()
    
    prompt = ChatPromptTemplate.from_messages([
      MessagesPlaceholder(variable_name="chat_history"),
      ("user", "{input}"),
      ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
    ])
    
    retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
    
    return retriever_chain
    

def get_conversational_rag_chain(retriever_chain): 
    
    llm = ChatOpenAI()
    
    prompt = ChatPromptTemplate.from_messages([
      ("system", "Answer the user's questions based on the below context:\n\n{context}"),
      MessagesPlaceholder(variable_name="chat_history"),
      ("user", "{input}"),
    ])
    
    stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
    
    return create_retrieval_chain(retriever_chain, stuff_documents_chain)

def get_response(user_input):
    retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
    conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
    
    response = conversation_rag_chain.invoke({
        "chat_history": st.session_state.chat_history,
        "input": user_query
    })
    
    return response['answer']

    
# app config
st.set_page_config(page_title= "Chat with Websites", page_icon="🤖")
st.title("Chat with Websites")





#sidebar
with st.sidebar:
    st.header("Settings")
    website_url = st.text_input("Website URL")
    openai_apikey = st.text_input("Enter your OpenAI API key")

if (website_url is None or website_url == "") or (openai_apikey is None or openai_apikey == ""):
    st.info("Please ensure if website URL and Open AI api key are entered")
    

else:
    
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = [ 
        AIMessage(content = "Hello, I am a bot. How can I help you"),
        ]

    if "vector_store" not in st.session_state:
        st.session_state.vector_store = get_vectorstore_from_url(website_url)

    documents = get_vector_store_from_url(website_url)
    with st.sidebar:
        st.write(documents)
    
    #user_input
    user_query = st.chat_input("Type your message here...")
    if user_query is not None and user_query !="":
        response = get_response(user_query)
        st.session_state.chat_history.append(HumanMessage(content=user_query))
        st.session_state.chat_history.append(AIMessage(content=response))
        
                
    #conversation
    for message in st.session_state.chat_history:
        if isinstance(message, AIMessage): # checking if the messsage is the instance of an AI message
            with st.chat_message("AI"):
                st.write(message.content)
        elif isinstance(message, HumanMessage): # checking if the messsage is the instance of a Human
            with st.chat_message("Human"):
                st.write(message.content)