Spaces:
Sleeping
Sleeping
File size: 10,531 Bytes
32531dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import cv2
import numpy as np
from PIL import Image
import pytesseract
import gradio as gr
from pdf2image import convert_from_path
import PyPDF2
from llama_index.core import VectorStoreIndex, Document
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import get_response_synthesizer
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer, util
import logging
from openai_tts_tool import generate_audio_and_text # Importing from openai_tts_tool
# Set up logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
# Load environment variables from .env file
load_dotenv()
# Initialize global variables
vector_index = None
query_log = []
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
# Preprocessing function
def preprocess_image(image_path):
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
temp_filename = "processed_image.png"
cv2.imwrite(temp_filename, processed_image)
return temp_filename
# Function to extract text from images
def extract_text_from_image(image_path, lang='eng'):
processed_image_path = preprocess_image(image_path)
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
return text
# Function to extract text from PDFs
def extract_text_from_pdf(pdf_path, lang='eng'):
text = ""
try:
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text.strip():
text += page_text
else:
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
for image in images:
image.save('temp_image.png', 'PNG')
text += extract_text_from_image('temp_image.png', lang=lang)
text += f"\n[OCR applied on page {page_num + 1}]\n"
except Exception as e:
return f"Error processing PDF: {str(e)}"
return text
# General function to handle different file types
def extract_text(file_path, lang='eng'):
file_ext = file_path.lower().split('.')[-1]
if file_ext in ['pdf']:
return extract_text_from_pdf(file_path, lang)
elif file_ext in ['png', 'jpg', 'jpeg']:
return extract_text_from_image(file_path, lang)
else:
return f"Unsupported file type: {file_ext}"
# Process uploaded documents and index them
def process_upload(api_key, files, lang):
global vector_index
if not api_key:
return "Please provide a valid OpenAI API Key.", None
if not files:
return "No files uploaded.", None
documents = []
error_messages = []
image_heavy_docs = []
for file_path in files:
try:
text = extract_text(file_path, lang)
if "This document consists of" in text and "page(s) of images" in text:
image_heavy_docs.append(os.path.basename(file_path))
documents.append(Document(text=text))
except Exception as e:
error_message = f"Error processing file {file_path}: {str(e)}"
logging.error(error_message)
error_messages.append(error_message)
if documents:
try:
embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
success_message = f"Successfully indexed {len(documents)} files."
if image_heavy_docs:
success_message += f"\nNote: The following documents consist mainly of images and may require manual review: {', '.join(image_heavy_docs)}"
if error_messages:
success_message += f"\nErrors: {'; '.join(error_messages)}"
return success_message, vector_index
except Exception as e:
return f"Error creating index: {str(e)}", None
else:
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}", None
# Function to calculate similarity
def calculate_similarity(response, ground_truth):
response_embedding = sentence_model.encode(response, convert_to_tensor=True)
truth_embedding = sentence_model.encode(ground_truth, convert_to_tensor=True)
response_embedding = response_embedding / np.linalg.norm(response_embedding)
truth_embedding = truth_embedding / np.linalg.norm(truth_embedding)
similarity = np.dot(response_embedding, truth_embedding)
similarity_percentage = (similarity + 1) / 2 * 100
return similarity_percentage
# Function to query documents
def query_app(query, model_name, use_similarity_check, openai_api_key):
global vector_index, query_log
if vector_index is None:
logging.error("No documents indexed yet. Please upload documents first.")
return "No documents indexed yet. Please upload documents first.", None
if not openai_api_key:
logging.error("No OpenAI API Key provided.")
return "Please provide a valid OpenAI API Key.", None
try:
llm = OpenAI(model=model_name, api_key=openai_api_key)
except Exception as e:
logging.error(f"Error initializing the OpenAI model: {e}")
return f"Error initializing the OpenAI model: {e}", None
response_synthesizer = get_response_synthesizer(llm=llm)
query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
try:
response = query_engine.query(query)
except Exception as e:
logging.error(f"Error during query processing: {e}")
return f"Error during query processing: {e}", None
generated_response = response.response
query_log.append({
"query_id": str(len(query_log) + 1),
"query": query,
"gt_answer": "Placeholder ground truth answer",
"response": generated_response,
"retrieved_context": [{"text": doc.text} for doc in response.source_nodes]
})
metrics = {}
if use_similarity_check:
try:
logging.info("Similarity check is enabled. Calculating similarity.")
similarity = calculate_similarity(generated_response, "Placeholder ground truth answer")
metrics['similarity'] = similarity
logging.info(f"Similarity calculated: {similarity}")
except Exception as e:
logging.error(f"Error during similarity calculation: {e}")
metrics['error'] = f"Error during similarity calculation: {e}"
return generated_response, metrics if use_similarity_check else None
# Function to generate audio and text (integrating from openai_tts_tool.py)
def process_tts(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt):
try:
return generate_audio_and_text(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt)
except Exception as e:
logging.error(f"Error during TTS generation: {e}")
return f"Error during TTS generation: {e}", None
# Main function with Gradio interface
def main():
with gr.Blocks(title="Document Processing and TTS App") as demo:
gr.Markdown("# π Document Processing, Text & Audio Generation App")
# Upload documents and chat functionality
with gr.Tab("π€ Upload Documents"):
api_key_input = gr.Textbox(label="Enter OpenAI API Key", placeholder="Paste your OpenAI API Key here")
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
upload_button = gr.Button("Upload and Index")
upload_status = gr.Textbox(label="Status", interactive=False)
upload_button.click(fn=process_upload, inputs=[api_key_input, file_upload, lang_dropdown], outputs=[upload_status])
# Chat with document
with gr.Tab("β Ask a Question"):
query_input = gr.Textbox(label="Enter your question")
model_dropdown = gr.Dropdown(choices=["gpt-4o", "gpt-4o-mini"], label="Select Model", value="gpt-4o")
similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
query_button = gr.Button("Ask")
answer_output = gr.Textbox(label="Answer", interactive=False)
metrics_output = gr.JSON(label="Metrics")
query_button.click(fn=query_app, inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input], outputs=[answer_output, metrics_output])
# Text-to-Speech generation
with gr.Tab("π£οΈ Generate Audio and Text"):
text_input = gr.Textbox(label="Enter text for generation")
voice_type = gr.Dropdown(choices=["alloy", "echo", "fable", "onyx"], label="Voice Type", value="alloy")
voice_speed = gr.Dropdown(choices=["normal", "slow", "fast"], label="Voice Speed", value="normal")
language = gr.Dropdown(choices=["en", "ar", "de", "hi"], label="Language", value="en")
output_option = gr.Radio(choices=["audio", "summary_text", "both"], label="Output Option", value="both")
summary_length = gr.Number(label="Summary Length", value=100)
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
generate_button = gr.Button("Generate")
audio_output = gr.Audio(label="Generated Audio", interactive=False)
summary_output = gr.Textbox(label="Generated Summary Text", interactive=False)
generate_button.click(fn=process_tts, inputs=[api_key_input, text_input, model_dropdown, voice_type, voice_speed, language, output_option, summary_length, additional_prompt], outputs=[audio_output, summary_output])
demo.launch()
if __name__ == "__main__":
main()
|