Spaces:
Sleeping
Sleeping
File size: 9,401 Bytes
32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 dd791f7 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 32531dc 9d47d09 dd791f7 9d47d09 32531dc 9d47d09 dd791f7 32531dc dd791f7 9d47d09 dd791f7 9d47d09 dd791f7 9d47d09 32531dc 9d47d09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import cv2
import numpy as np
from PIL import Image
import pytesseract
import gradio as gr
from pdf2image import convert_from_path
import PyPDF2
from llama_index.core import VectorStoreIndex, Document
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import get_response_synthesizer
from sentence_transformers import SentenceTransformer, util
import logging
from openai_tts_tool import generate_audio_and_text
import tempfile
# Set up logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
# Initialize global variables
vector_index = None
query_log = []
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
# Get available languages for OCR
try:
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
except:
langs = ['eng'] # Fallback to English if tesseract isn't properly configured
def create_temp_dir():
"""Create temporary directory if it doesn't exist"""
temp_dir = os.path.join(os.getcwd(), 'temp')
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
return temp_dir
def preprocess_image(image_path):
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
temp_dir = create_temp_dir()
temp_filename = os.path.join(temp_dir, "processed_image.png")
cv2.imwrite(temp_filename, processed_image)
return temp_filename
def extract_text_from_image(image_path, lang='eng'):
processed_image_path = preprocess_image(image_path)
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
try:
os.remove(processed_image_path)
except:
pass
return text
def extract_text_from_pdf(pdf_path, lang='eng'):
text = ""
temp_dir = create_temp_dir()
try:
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text.strip():
text += page_text
else:
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
for image in images:
temp_image_path = os.path.join(temp_dir, f'temp_image_{page_num}.png')
image.save(temp_image_path, 'PNG')
text += extract_text_from_image(temp_image_path, lang=lang)
text += f"\n[OCR applied on page {page_num + 1}]\n"
try:
os.remove(temp_image_path)
except:
pass
except Exception as e:
return f"Error processing PDF: {str(e)}"
return text
def extract_text(file_path, lang='eng'):
file_ext = file_path.lower().split('.')[-1]
if file_ext in ['pdf']:
return extract_text_from_pdf(file_path, lang)
elif file_ext in ['png', 'jpg', 'jpeg']:
return extract_text_from_image(file_path, lang)
else:
return f"Unsupported file type: {file_ext}"
def process_upload(api_key, files, lang):
global vector_index
if not api_key:
return "Please provide a valid OpenAI API Key."
if not files:
return "No files uploaded."
documents = []
error_messages = []
image_heavy_docs = []
for file_path in files:
try:
text = extract_text(file_path, lang)
if "This document consists of" in text and "page(s) of images" in text:
image_heavy_docs.append(os.path.basename(file_path))
documents.append(Document(text=text))
except Exception as e:
error_message = f"Error processing file {os.path.basename(file_path)}: {str(e)}"
logging.error(error_message)
error_messages.append(error_message)
if documents:
try:
embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
success_message = f"Successfully indexed {len(documents)} files."
if image_heavy_docs:
success_message += f"\nNote: The following documents consist mainly of images and may require manual review: {', '.join(image_heavy_docs)}"
if error_messages:
success_message += f"\nErrors: {'; '.join(error_messages)}"
return success_message
except Exception as e:
return f"Error creating index: {str(e)}"
else:
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}"
def query_app(query, model_name, use_similarity_check, api_key):
global vector_index, query_log
if vector_index is None:
return "No documents indexed yet. Please upload documents first."
if not api_key:
return "Please provide a valid OpenAI API Key."
try:
llm = OpenAI(model=model_name, api_key=api_key)
response_synthesizer = get_response_synthesizer(llm=llm)
query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
response = query_engine.query(query)
generated_response = response.response
return generated_response
except Exception as e:
logging.error(f"Error during query processing: {e}")
return f"Error during query processing: {str(e)}"
def create_gradio_interface():
with gr.Blocks(title="Document Processing and TTS App") as demo:
gr.Markdown("# π Document Processing, Text & Audio Generation App")
with gr.Tab("π€ Upload Documents"):
api_key_input = gr.Textbox(
label="Enter OpenAI API Key",
placeholder="Paste your OpenAI API Key here",
type="password"
)
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
upload_button = gr.Button("Upload and Index")
upload_status = gr.Textbox(label="Status", interactive=False)
with gr.Tab("β Ask a Question"):
query_input = gr.Textbox(label="Enter your question")
model_dropdown = gr.Dropdown(
choices=["gpt-4-0125-preview", "gpt-3.5-turbo-0125"],
label="Select Model",
value="gpt-3.5-turbo-0125"
)
similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
query_button = gr.Button("Ask")
answer_output = gr.Textbox(label="Answer", interactive=False)
with gr.Tab("π£οΈ Generate Audio and Text"):
text_input = gr.Textbox(label="Enter text for generation")
voice_type = gr.Dropdown(
choices=["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
label="Voice Type",
value="alloy"
)
voice_speed = gr.Slider(
minimum=0.25,
maximum=4.0,
value=1.0,
label="Voice Speed"
)
language = gr.Dropdown(
choices=["en", "ar", "de", "hi", "es", "fr", "it", "ja", "ko", "pt"],
label="Language",
value="en"
)
output_option = gr.Radio(
choices=["audio", "summary_text", "both"],
label="Output Option",
value="both"
)
summary_length = gr.Slider(
minimum=50,
maximum=500,
value=100,
step=10,
label="Summary Length (words)"
)
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
generate_button = gr.Button("Generate")
audio_output = gr.Audio(label="Generated Audio")
summary_output = gr.Textbox(label="Generated Summary Text")
# Wire up the components
upload_button.click(
fn=process_upload,
inputs=[api_key_input, file_upload, lang_dropdown],
outputs=[upload_status]
)
query_button.click(
fn=query_app,
inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input],
outputs=[answer_output]
)
generate_button.click(
fn=generate_audio_and_text,
inputs=[
api_key_input, text_input, model_dropdown, voice_type,
voice_speed, language, output_option, summary_length,
additional_prompt
],
outputs=[audio_output, summary_output]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch()
else:
demo = create_gradio_interface() |