File size: 5,347 Bytes
066e937
9819c30
43cb2b8
 
41e855d
 
 
43cb2b8
 
41e855d
 
 
 
 
 
 
 
43cb2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c188ac
 
 
43cb2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c188ac
43cb2b8
 
 
8c188ac
43cb2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c188ac
43cb2b8
 
 
 
8c188ac
 
43cb2b8
 
 
 
 
 
 
 
 
 
 
 
 
41e855d
9819c30
41e855d
 
 
 
 
 
 
 
8c188ac
49876ba
43cb2b8
 
 
eb81ac7
 
2b1ef13
066e937
 
eb81ac7
066e937
 
 
 
 
 
eb81ac7
066e937
 
 
 
 
 
 
eb81ac7
066e937
 
 
 
 
eb81ac7
066e937
 
 
 
eb81ac7
066e937
 
 
9819c30
49876ba
066e937
49876ba
066e937
49876ba
066e937
 
 
 
 
 
 
 
 
 
e1f6cb1
2b1ef13
43cb2b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
import json
import os
import re
import uuid


client = InferenceClient("tiiuae/falcon-7b-instruct") #  HuggingFaceH4/zephyr-7b-beta


def trigger_example(example):
    chat, updated_history = generate_response(example)
    return chat, updated_history

    
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    uploaded_file,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    if uploaded_file is not None:
        with open(uploaded_file.name, "r") as f:
            file_content = f.read()
        messages.append({"role": "user", "content": f"{message}\n\nFile content:\n{file_content}"})
    else:
        messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

  
    if uploaded_file is not None:
        print(f"Uploaded file: {uploaded_file.name}")


        if uploaded_file.name.endswith(".csv"):
            try:
                df = pd.read_csv(uploaded_file.name)
                print(f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.")
                json_data = df.to_json(orient="records")
                with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file:
                    json_file.write(json_data)
                print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json")
            except Exception as e:
                print(f"Error loading CSV file: {e}")

        elif uploaded_file.name.endswith(".txt"):
            try:
                with open(uploaded_file.name, "r") as f:
                    text = f.read()
                print(f"Text file loaded with {len(text)} characters.")
                json_data = json.dumps({"text": text})
                with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file:
                    json_file.write(json_data)
                print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json")
            except Exception as e:
                print(f"Error loading text file: {e}")

def clear_chat():
    return [], [], str(uuid.uuid4())


examples = [
    "Explain the relativity theory in French",
    "Como sair de um helicóptero que caiu na água?",
    "¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
    "Explain gravity to a chicken.",
    "Give me an example of an endangered species and let me know what I can do to help preserve it",
    "Formally introduce the transformer architecture with notation.",
    
]



demo = gr.ChatInterface(
    respond,
    title="Nixie Steamcore, a hotbot!",
    additional_inputs=[
        gr.Textbox(value="Nixie Steamcore, a hotbot!", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
        gr.File(label="Upload a document"),
    ],
)

if __name__ == "__main__":
    demo.launch(debug=True)

    """
if __name__ == "__main__":
    # demo.launch(debug=True)
    try:
        demo.queue(api_open=False, max_size=40).launch(show_api=False)
    except Exception as e:
        print(f"Error: {e}")
"""

"""
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()
    """