File size: 8,094 Bytes
db86bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from functools import lru_cache
from typing import List, Tuple

import cv2
import numpy
from cv2.typing import Size

import facefusion.choices
from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame


@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
	return\
	{
		'xseg_1':
		{
			'hashes':
			{
				'face_occluder':
				{
					'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
					'path': resolve_relative_path('../.assets/models/xseg_1.hash')
				}
			},
			'sources':
			{
				'face_occluder':
				{
					'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
					'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
				}
			},
			'size': (256, 256)
		},
		'xseg_2':
		{
			'hashes':
			{
				'face_occluder':
				{
					'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
					'path': resolve_relative_path('../.assets/models/xseg_2.hash')
				}
			},
			'sources':
			{
				'face_occluder':
				{
					'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
					'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
				}
			},
			'size': (256, 256)
		},
		'bisenet_resnet_18':
		{
			'hashes':
			{
				'face_parser':
				{
					'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
					'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
				}
			},
			'sources':
			{
				'face_parser':
				{
					'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
					'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
				}
			},
			'size': (512, 512)
		},
		'bisenet_resnet_34':
		{
			'hashes':
			{
				'face_parser':
				{
					'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'),
					'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash')
				}
			},
			'sources':
			{
				'face_parser':
				{
					'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'),
					'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx')
				}
			},
			'size': (512, 512)
		}
	}


def get_inference_pool() -> InferencePool:
	_, model_sources = collect_model_downloads()
	return inference_manager.get_inference_pool(__name__, model_sources)


def clear_inference_pool() -> None:
	inference_manager.clear_inference_pool(__name__)


def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
	model_hashes = {}
	model_sources = {}
	model_set = create_static_model_set('full')

	if state_manager.get_item('face_occluder_model') == 'xseg_1':
		model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder')
		model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder')

	if state_manager.get_item('face_occluder_model') == 'xseg_2':
		model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder')
		model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder')

	if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18':
		model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser')
		model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser')

	if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34':
		model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser')
		model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser')

	return model_hashes, model_sources


def pre_check() -> bool:
	model_hashes, model_sources = collect_model_downloads()

	return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)


@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
	blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
	blur_area = max(blur_amount // 2, 1)
	box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32)
	box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
	box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
	box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
	box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
	if blur_amount > 0:
		box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
	return box_mask


def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
	face_occluder_model = state_manager.get_item('face_occluder_model')
	model_size = create_static_model_set('full').get(face_occluder_model).get('size')
	prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
	prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
	prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
	occlusion_mask = forward_occlude_face(prepare_vision_frame)
	occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
	occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
	occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
	return occlusion_mask


def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
	face_parser_model = state_manager.get_item('face_parser_model')
	model_size = create_static_model_set('full').get(face_parser_model).get('size')
	prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
	prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
	prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
	prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32))
	prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
	prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
	region_mask = forward_parse_face(prepare_vision_frame)
	region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
	region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
	region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
	return region_mask


def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
	convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32))
	mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32)
	mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) #type:ignore[call-overload]
	mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3)))
	mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15)
	return mouth_mask


def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
	face_occluder_model = state_manager.get_item('face_occluder_model')
	face_occluder = get_inference_pool().get(face_occluder_model)

	with conditional_thread_semaphore():
		occlusion_mask : Mask = face_occluder.run(None,
		{
			'input': prepare_vision_frame
		})[0][0]

	return occlusion_mask


def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
	face_parser_model = state_manager.get_item('face_parser_model')
	face_parser = get_inference_pool().get(face_parser_model)

	with conditional_thread_semaphore():
		region_mask : Mask = face_parser.run(None,
		{
			'input': prepare_vision_frame
		})[0][0]

	return region_mask