Spaces:
Runtime error
Runtime error
File size: 8,094 Bytes
db86bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from functools import lru_cache
from typing import List, Tuple
import cv2
import numpy
from cv2.typing import Size
import facefusion.choices
from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'xseg_1':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
'path': resolve_relative_path('../.assets/models/xseg_1.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
}
},
'size': (256, 256)
},
'xseg_2':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
'path': resolve_relative_path('../.assets/models/xseg_2.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
}
},
'size': (256, 256)
},
'bisenet_resnet_18':
{
'hashes':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
}
},
'sources':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
}
},
'size': (512, 512)
},
'bisenet_resnet_34':
{
'hashes':
{
'face_parser':
{
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash')
}
},
'sources':
{
'face_parser':
{
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx')
}
},
'size': (512, 512)
}
}
def get_inference_pool() -> InferencePool:
_, model_sources = collect_model_downloads()
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_hashes = {}
model_sources = {}
model_set = create_static_model_set('full')
if state_manager.get_item('face_occluder_model') == 'xseg_1':
model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder')
model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder')
if state_manager.get_item('face_occluder_model') == 'xseg_2':
model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder')
model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder')
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18':
model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser')
model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser')
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34':
model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser')
model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser')
return model_hashes, model_sources
def pre_check() -> bool:
model_hashes, model_sources = collect_model_downloads()
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
blur_area = max(blur_amount // 2, 1)
box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32)
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
if blur_amount > 0:
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
return box_mask
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
face_occluder_model = state_manager.get_item('face_occluder_model')
model_size = create_static_model_set('full').get(face_occluder_model).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
occlusion_mask = forward_occlude_face(prepare_vision_frame)
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return occlusion_mask
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
face_parser_model = state_manager.get_item('face_parser_model')
model_size = create_static_model_set('full').get(face_parser_model).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32))
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
region_mask = forward_parse_face(prepare_vision_frame)
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return region_mask
def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32))
mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32)
mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) #type:ignore[call-overload]
mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3)))
mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15)
return mouth_mask
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
face_occluder_model = state_manager.get_item('face_occluder_model')
face_occluder = get_inference_pool().get(face_occluder_model)
with conditional_thread_semaphore():
occlusion_mask : Mask = face_occluder.run(None,
{
'input': prepare_vision_frame
})[0][0]
return occlusion_mask
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
face_parser_model = state_manager.get_item('face_parser_model')
face_parser = get_inference_pool().get(face_parser_model)
with conditional_thread_semaphore():
region_mask : Mask = face_parser.run(None,
{
'input': prepare_vision_frame
})[0][0]
return region_mask
|