File size: 12,448 Bytes
f64d79a
 
ac72382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f64d79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72382
 
 
f64d79a
 
 
ac72382
f64d79a
ac72382
f64d79a
ac72382
 
 
f64d79a
 
 
 
 
 
 
 
 
 
ac72382
f64d79a
 
 
 
 
 
 
 
 
 
ac72382
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os, json, requests, runpod

import torch
import random
import ast
from comfy.sd import load_checkpoint_guess_config
from comfy.sd import load_lora_for_models
from comfy.utils import load_torch_file
import nodes
from comfy_extras import nodes_upscale_model
import numpy as np
from PIL import Image

import asyncio
import execution
import server
from nodes import load_custom_node

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)

load_custom_node("/content/ComfyUI/custom_nodes/comfy_mtb")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI_IPAdapter_plus")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-AnimateDiff-Evolved")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Image-Selector")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Frame-Interpolation")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite")

from nodes import NODE_CLASS_MAPPINGS
ColorCorrect = NODE_CLASS_MAPPINGS["Color Correct (mtb)"]()
IPAdapterAdvanced = NODE_CLASS_MAPPINGS["IPAdapterAdvanced"]()
IPAdapterUnifiedLoader = NODE_CLASS_MAPPINGS["IPAdapterUnifiedLoader"]()

ADE_LoadAnimateDiffModel = NODE_CLASS_MAPPINGS["ADE_LoadAnimateDiffModel"]()
ADE_MultivalDynamic = NODE_CLASS_MAPPINGS["ADE_MultivalDynamic"]()
ADE_ApplyAnimateDiffModel = NODE_CLASS_MAPPINGS["ADE_ApplyAnimateDiffModel"]()
ADE_LoopedUniformContextOptions = NODE_CLASS_MAPPINGS["ADE_LoopedUniformContextOptions"]()
ADE_AnimateDiffSamplingSettings = NODE_CLASS_MAPPINGS["ADE_AnimateDiffSamplingSettings"]()
ADE_UseEvolvedSampling = NODE_CLASS_MAPPINGS["ADE_UseEvolvedSampling"]()
VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]()
EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
VAEEncode = NODE_CLASS_MAPPINGS["VAEEncode"]()
VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
ImageScaleBy = NODE_CLASS_MAPPINGS["ImageScaleBy"]()
ImageScale = NODE_CLASS_MAPPINGS["ImageScale"]()
UpscaleModelLoader = nodes_upscale_model.NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
ImageUpscaleWithModel = nodes_upscale_model.NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()

ImageSelector = NODE_CLASS_MAPPINGS["ImageSelector"]()
ImageBatch = NODE_CLASS_MAPPINGS["ImageBatch"]()
RIFE_VFI =  NODE_CLASS_MAPPINGS["RIFE VFI"]()

def set_last_layer(clip, stop_at_clip_layer):
    clip = clip.clone()
    clip.clip_layer(stop_at_clip_layer)
    return clip

discord_token = os.getenv('com_camenduru_discord_token')
web_uri = os.getenv('com_camenduru_web_uri')
web_token = os.getenv('com_camenduru_web_token')

with torch.inference_mode():
    model_patcher_1, clip_1, vae_1, clipvision_1 = load_checkpoint_guess_config("/content/ComfyUI/models/checkpoints/zavychromaxl_v80.safetensors", output_vae=True, output_clip=True, embedding_directory=None)
    clip_1 = set_last_layer(clip_1, -1)
    lora_1 = load_torch_file("/content/ComfyUI/models/loras/SDXL-Lightning/sdxl_lightning_8step_lora.safetensors", safe_load=True)
    model_lora_1, clip_lora_1 = load_lora_for_models(model_patcher_1, clip_1, lora_1, 1.0, 0.0)

    model_patcher_2, clip_2, vae_2, clipvision_2 = load_checkpoint_guess_config("/content/ComfyUI/models/checkpoints/juggernaut_reborn.safetensors", output_vae=True, output_clip=True, embedding_directory=None)
    clip_2 = set_last_layer(clip_2, -1)
    lora_2 = load_torch_file("/content/ComfyUI/models/loras/AnimateLCM_sd15_t2v_lora.safetensors", safe_load=True)
    model_lora_2, clip_lora_2 = load_lora_for_models(model_patcher_2, clip_2, lora_2, 1.0, 0.0)
    IPAdapterPlus_model = IPAdapterUnifiedLoader.load_models(model_lora_2, 'PLUS (high strength)', lora_strength=1.0, provider="CUDA", ipadapter=None)
        
    animate_vae = VAELoader.load_vae("vae-ft-mse-840000-ema-pruned.safetensors")

@torch.inference_mode()
def generate(input):
    values = input["input"]

    prompt_1 = values['prompt']
    negative_prompt_1 = values['negative_prompt']
    seed = values['seed']
    is_upscale = values['is_upscale']

    latent_zero_1 = {"samples":torch.zeros([1, 4, 1024 // 8, 1024 // 8])}
    cond_1, pooled_1 = clip_lora_1.encode_from_tokens(clip_lora_1.tokenize(prompt_1), return_pooled=True)
    cond_1 = [[cond_1, {"pooled_output": pooled_1}]]
    n_cond_1, n_pooled_1 = clip_lora_1.encode_from_tokens(clip_lora_1.tokenize(negative_prompt_1), return_pooled=True)
    n_cond_1 = [[n_cond_1, {"pooled_output": n_pooled_1}]]    
    if seed == 0:
        seed = random.randint(0, 18446744073709551615)
    print(seed)
    sample_1 = nodes.common_ksampler(model=model_lora_1, 
                            seed=seed, 
                            steps=8, 
                            cfg=1.0, 
                            sampler_name="euler", 
                            scheduler="sgm_uniform", 
                            positive=cond_1, 
                            negative=n_cond_1,
                            latent=latent_zero_1, 
                            denoise=1)
    sample_1 = sample_1[0]["samples"].to(torch.float16)
    vae_1.first_stage_model.cuda()
    decoded_1 = vae_1.decode_tiled(sample_1).detach()
    decoded_image_1 = ColorCorrect.correct(decoded_1, clamp=True, gamma=1.1, contrast=1.1, exposure=0.15, offset=0.0, hue=0.0, saturation=1.0, value=1.0)

    ip_model_patcher = IPAdapterAdvanced.apply_ipadapter(IPAdapterPlus_model[0], IPAdapterPlus_model[1], start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, image=decoded_image_1[0])
    motion_model = ADE_LoadAnimateDiffModel.load_motion_model(model_name="AnimateLCM_sd15_t2v.ckpt")
    scale_multival = ADE_MultivalDynamic.create_multival(float_val=1.2)
    m_models = ADE_ApplyAnimateDiffModel.apply_motion_model(motion_model=motion_model[0], scale_multival=scale_multival[0])
    context_options = ADE_LoopedUniformContextOptions.create_options(context_length=16, context_stride=1, context_overlap=4, closed_loop=False, fuse_method="flat", use_on_equal_length=False, start_percent=0.0, guarantee_steps=1)
    sample_settings = ADE_AnimateDiffSamplingSettings.create_settings(batch_offset=0, noise_type="FreeNoise", seed_gen="comfy", seed_offset=0)
    animate_diff_model = ADE_UseEvolvedSampling.use_evolved_sampling(model=ip_model_patcher[0], beta_schedule="sqrt_linear (AnimateDiff)", m_models=m_models[0], context_options=context_options[0], sample_settings=sample_settings[0])

    latent_zero_24 = EmptyLatentImage.generate(288, 512, 24)
    prompt_2= ""
    cond_2, pooled_2 = clip_lora_2.encode_from_tokens(clip_lora_2.tokenize(prompt_2), return_pooled=True)
    cond_2 = [[cond_2, {"pooled_output": pooled_2}]]
    negative_prompt_2 = ""
    n_cond_2, n_pooled_2 = clip_lora_2.encode_from_tokens(clip_lora_2.tokenize(negative_prompt_2), return_pooled=True)
    n_cond_2 = [[n_cond_2, {"pooled_output": n_pooled_2}]]
    sample_2 = nodes.common_ksampler(model=animate_diff_model[0], 
                            seed=seed, 
                            steps=9, 
                            cfg=1.0, 
                            sampler_name="lcm", 
                            scheduler="sgm_uniform", 
                            positive=cond_2, 
                            negative=n_cond_2,
                            latent=latent_zero_24[0], 
                            denoise=1)
    sample_2 = sample_2[0]["samples"].to(torch.float16)
    animate_vae[0].first_stage_model.cuda()
    decoded_video_1 = animate_vae[0].decode_tiled(sample_2).detach()

    upscaled_video_1 = ImageScaleBy.upscale(decoded_video_1, "lanczos", 2.0)
    latent_video_2 = VAEEncode.encode(animate_vae[0], upscaled_video_1[0])

    sample_3 = nodes.common_ksampler(model=animate_diff_model[0], 
                            seed=seed, 
                            steps=10, 
                            cfg=1.0, 
                            sampler_name="lcm", 
                            scheduler="sgm_uniform", 
                            positive=cond_2, 
                            negative=n_cond_2,
                            latent=latent_video_2[0], 
                            denoise=0.45)
    sample_3 = sample_3[0]["samples"].to(torch.float16)
    animate_vae[0].first_stage_model.cuda()
    decoded_video_2 = animate_vae[0].decode_tiled(sample_3).detach()

    if(is_upscale):
        upscale_model = UpscaleModelLoader.load_model("RealESRGAN_x4.pth")
        upscale_model_with_model = ImageUpscaleWithModel.upscale(upscale_model=upscale_model[0], image=decoded_video_2)
        decoded_video_2 = ImageScale.upscale(image=upscale_model_with_model[0], upscale_method="nearest-exact", width=1080, height=1920, crop="disabled")[0]

    image_selector = ImageSelector.run(images=decoded_video_2, selected_indexes="0")
    image_batch = ImageBatch.batch(image1=image_selector[0], image2=decoded_video_2)
    rife_vfi = RIFE_VFI.vfi(frames=image_batch[0], ckpt_name="rife47.pth", clear_cache_after_n_frames=320, multiplier=4, fast_mode=True, ensemble=True, scale_factor = 1.0)

    prompt_3 = "[{'inputs': {'pix_fmt': 'yuv420p', 'crf': 15, 'save_metadata': True}}]"
    prompt_3 = ast.literal_eval(prompt_3)
    out_video4 = VHS_VideoCombine.combine_video(images=rife_vfi[0], frame_rate=30, loop_count=0, filename_prefix="interpolated/", format="video/h264-mp4", save_output=False, prompt=prompt_3, unique_id=0)

    result = out_video4["result"][0][1][1]
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        default_filename = os.path.basename(result)
        with open(result, "rb") as file:
            files = {default_filename: file.read()}
        payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        response = requests.post(
            f"https://discord.com/api/v9/channels/{discord_channel}/messages",
            data=payload,
            headers={"Authorization": f"Bot {discord_token}"},
            files=files
        )
        response.raise_for_status()
        result_url = response.json()['attachments'][0]['url']
        notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": result_url, "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result):
            os.remove(result)

runpod.serverless.start({"handler": generate})