Spaces:
Runtime error
Runtime error
File size: 19,642 Bytes
7a4b92f 128e4f0 7a4b92f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
"""
Utilities to read and produce to-scale images from DIDSON and ARIS sonar files.
Portions of this code were adapted from SoundMetrics MATLAB code.
"""
__version__ = 'b1.0.2'
import contextlib
import itertools
from matplotlib.cm import get_cmap
import numpy as np
import os
import pandas as pd
from PIL import Image
from shutil import make_archive, rmtree
import struct
from types import SimpleNamespace
import lib.fish_eye.pyARIS as pyARIS
from backend.pyDIDSON_format import *
class pyDIDSON:
def __init__(self, file, beam_width_dir='beam_widths', ixsize=-1):
""" Load header info from DIDSON file and precompute some warps.
Parameters
----------
file : file-like object, string, or pathlib.Path
The DIDSON or ARIS file to read.
beam_width_dir : string or pathlib.Path, optional
Location of ARIS beam width CSV files. Only used for ARIS files.
ixsize : int, optional
x-dimension width of output warped images to produce. Width is approximate for ARIS files and definite for
DIDSON. If not specified, the default for ARIS is determined by pyARIS and the default for DIDSON is 300.
Returns
-------
info : dict
Dictionary of extracted headers and computed sonar values.
"""
if hasattr(file, 'read'):
file_ctx = contextlib.nullcontext(file)
else:
file_ctx = open(file, 'rb')
with file_ctx as fid:
assert fid.read(3) == b'DDF'
version_id = fid.read(1)[0]
print(f'Version {version_id}')
fid.seek(0)
info = {
'pydidson_version': __version__,
}
self.info = info
file_attributes, frame_attributes = {
0: NotImplementedError,
1: NotImplementedError,
2: NotImplementedError,
3: [file_attributes_3, frame_attributes_3],
4: [file_attributes_4, frame_attributes_4],
5: [file_attributes_5, frame_attributes_5],
}[version_id]
fileheaderformat = '=' + ''.join(file_attributes.values())
fileheadersize = struct.calcsize(fileheaderformat)
info.update(dict(zip(file_attributes.keys(), struct.unpack(fileheaderformat, fid.read(fileheadersize)))))
frameheaderformat = '=' + ''.join(frame_attributes.values())
frameheadersize = struct.calcsize(frameheaderformat)
info.update(dict(zip(frame_attributes.keys(), struct.unpack(frameheaderformat, fid.read(frameheadersize)))))
info.update({
'fileheaderformat': fileheaderformat,
'fileheadersize': fileheadersize,
'frameheaderformat': frameheaderformat,
'frameheadersize': frameheadersize,
})
if version_id == 0:
raise NotImplementedError
elif version_id == 1:
raise NotImplementedError
elif version_id == 2:
raise NotImplementedError
elif version_id == 3:
# Convert windowlength code to meters
info['windowlength'] = {
0b00: [0.83, 2.5, 5, 10, 20, 40], # DIDSON-S, Extended Windows
0b01: [1.125, 2.25, 4.5, 9, 18, 36], # DIDSON-S, Classic Windows
0b10: [2.5, 5, 10, 20, 40, 70], # DIDSON-LR, Extended Window
0b11: [2.25, 4.5, 9, 18, 36, 72], # DIDSON-LR, Classic Windows
}[info['configflags'] & 0b11][info['windowlength'] + 2 * (1 - info['resolution'])]
# Windowstart 1 to 31 times 0.75 (Lo) or 0.375 (Hi) or 0.419 for extended
info['windowstart'] = {
0b0: 0.419 * info['windowstart'] * (2 - info['resolution']), # meters for extended DIDSON
0b1:
0.375 * info['windowstart'] * (2 - info['resolution']), # meters for standard or long range DIDSON
}[info['configflags'] & 0b1]
info['halffov'] = 14.4
elif version_id == 4:
# Convert windowlength code to meters
info['windowlength'] = [1.25, 2.5, 5, 10, 20, 40][info['windowlength'] + 2 * (1 - info['resolution'])]
# Windowstart 1 to 31 times 0.75 (Lo) or 0.375 (Hi) or 0.419 for extended
info['windowstart'] = 0.419 * info['windowstart'] * (2 - info['resolution'])
info['halffov'] = 14.4
elif version_id == 5: #ARIS
if info['pingmode'] in [1, 2]:
BeamCount = 48
elif info['pingmode'] in [3, 4, 5]:
BeamCount = 96
elif info['pingmode'] in [6, 7, 8]:
BeamCount = 64
elif info['pingmode'] in [9, 10, 11, 12]:
BeamCount = 128
else:
raise
WinStart = info['samplestartdelay'] * 0.000001 * info['soundspeed'] / 2
info.update({
'BeamCount': BeamCount,
'WinStart': WinStart,
})
aris_frame = SimpleNamespace(**info)
beam_width_data, camera_type = pyARIS.load_beam_width_data(frame=aris_frame,
beam_width_dir=beam_width_dir)
# What is the meter resolution of the smallest sample?
min_pixel_size = pyARIS.get_minimum_pixel_meter_size(aris_frame, beam_width_data)
# What is the meter resolution of the sample length?
sample_length = aris_frame.sampleperiod * 0.000001 * aris_frame.soundspeed / 2
# Choose the size of a pixel (or hard code it to some specific value)
pixel_meter_size = max(min_pixel_size, sample_length)
# Determine the image dimensions
xdim, ydim, x_meter_start, y_meter_start, x_meter_stop, y_meter_stop = pyARIS.compute_image_bounds(
pixel_meter_size,
aris_frame,
beam_width_data,
additional_pixel_padding_x=0,
additional_pixel_padding_y=0)
if ixsize != -1:
pixel_meter_size = pixel_meter_size * xdim / ixsize
pixel_meter_size += 1e-5
xdim, ydim, x_meter_start, y_meter_start, x_meter_stop, y_meter_stop = pyARIS.compute_image_bounds(
pixel_meter_size,
aris_frame,
beam_width_data,
additional_pixel_padding_x=0,
additional_pixel_padding_y=0)
read_rows, read_cols, write_rows, write_cols = pyARIS.compute_mapping_from_sample_to_image(
pixel_meter_size, xdim, ydim, x_meter_start, y_meter_start, aris_frame, beam_width_data)
read_i = read_rows * info['numbeams'] + info['numbeams'] - read_cols - 1
pixel_meter_width = pixel_meter_size
pixel_meter_height = pixel_meter_size
info.update({
'camera_type': camera_type,
'min_pixel_size': min_pixel_size,
'sample_length': sample_length,
'x_meter_start': x_meter_start,
'y_meter_start': y_meter_start,
'x_meter_stop': x_meter_stop,
'y_meter_stop': y_meter_stop,
'beam_width_dir': os.path.abspath(beam_width_dir),
})
else:
raise
if version_id < 5:
info['xdim'] = 300 if ixsize == -1 else ixsize
ydim, xdim, write_rows, write_cols, read_i = self.__mapscan()
# widthscale meters/pixels
pixel_meter_width = 2 * (info['windowstart'] + info['windowlength']) * np.sin(np.radians(14.25)) / xdim
# heightscale meters/pixels
pixel_meter_height = ((info['windowstart'] + info['windowlength']) -
info['windowstart'] * np.cos(np.radians(14.25))) / ydim
pixel_meter_size = (pixel_meter_width + pixel_meter_height) / 2
self.write_rows = write_rows
self.write_cols = write_cols
self.read_i = read_i
info.update({
'xdim': xdim,
'ydim': ydim,
'pixel_meter_width': pixel_meter_width,
'pixel_meter_height': pixel_meter_height,
'pixel_meter_size': pixel_meter_size,
})
# Fix common but critical corruption errors
if info['startframe'] > 65535:
info['startframe'] = 0
if info['endframe'] > 65535:
info['endframe'] = 0
try:
info['filename'] = os.path.abspath(file_ctx.name)
except AttributeError:
info['filename'] = None
# Record the proportion of measurements that are present in the warp (increases as xdim increases)
info['proportion_warp'] = len(np.unique(read_i)) / (info['numbeams'] * info['samplesperchannel'])
def __lens_distortion(self, nbeams, theta):
""" Removes Lens distortion determined by empirical work at the barge.
Parameters
----------
nbeams : int
Number of sonar beams.
theta : (A,) ndarray
Angle of warp for each x index.
Returns
-------
beamnum : (A,) ndarray
Distortion-adjusted beam number for each theta.
"""
factor, a = {
48: [1, [.0015, -0.0036, 1.3351, 24.0976]],
189: [4.026, [.0015, -0.0036, 1.3351, 24.0976]],
96: [1.012, [.0030, -0.0055, 2.6829, 48.04]],
381: [4.05, [.0030, -0.0055, 2.6829, 48.04]],
}[nbeams]
return np.rint(factor * (a[0] * theta**3 + a[1] * theta**2 + a[2] * theta + a[3]) + 1).astype(np.uint32)
def __mapscan(self):
""" Calculate warp mapping from raw to scale images.
Returns
-------
ydim : int
y-dimension of warped image.
xdim : int
x-dimension of warped image.
write_rows : (A,) ndarray, np.uint16
Row indices to write to warped image.
write_cols : (A,) ndarray, np.uint16
Column indices to write to warped image.
read_i : (A,) ndarray, np.uint32
Indices to read from raw sonar measurements.
"""
xdim = self.info['xdim']
rmin = self.info['windowstart']
rmax = rmin + self.info['windowlength']
halffov = self.info['halffov']
nbeams = self.info['numbeams']
nbins = self.info['samplesperchannel']
degtorad = 3.14159 / 180 # conversion of degrees to radians
radtodeg = 180 / 3.14159 # conversion of radians to degrees
d2 = rmax * np.cos(
halffov * degtorad) # see drawing (distance from point scan touches image boundary to origin)
d3 = rmin * np.cos(halffov * degtorad) # see drawing (bottom of image frame to r,theta origin in meters)
c1 = (nbins - 1) / (rmax - rmin) # precalcualtion of constants used in do loop below
c2 = (nbeams - 1) / (2 * halffov)
gamma = xdim / (2 * rmax * np.sin(halffov * degtorad)) # Ratio of pixel number to position in meters
ydim = int(np.fix(gamma * (rmax - d3) + 0.5)) # number of pixels in image in vertical direction
svector = np.zeros(xdim * ydim, dtype=np.uint32) # make vector and fill in later
ix = np.arange(1, xdim + 1) # pixels in x dimension
x = ((ix - 1) - xdim / 2) / gamma # convert from pixels to meters
for iy in range(1, ydim + 1):
y = rmax - (iy - 1) / gamma # convert from pixels to meters
r = np.sqrt(y**2 + x**2) # convert to polar cooridinates
theta = radtodeg * np.arctan2(x, y) # theta is in degrees
binnum = np.rint((r - rmin) * c1 + 1.5).astype(np.uint32) # the rangebin number
beamnum = self.__lens_distortion(nbeams, theta) # remove lens distortion using empirical formula
# find position in sample array expressed as a vector
# make pos = 0 if outside sector, else give it the offset in the sample array
pos = (beamnum > 0) * (beamnum <= nbeams) * (binnum > 0) * (binnum <= nbins) * (
(beamnum - 1) * nbins + binnum)
svector[(ix - 1) * ydim + iy - 1] = pos # The offset in this array is the pixel offset in the image array
# The value at this offset is the offset in the sample array
svector = svector.reshape(xdim, ydim).T.flat
svectori = svector != 0
read_i = np.flipud(np.arange(nbins * nbeams, dtype=np.uint32).reshape(nbins,
nbeams).T).flat[svector[svectori] - 1]
write_rows, write_cols = np.unravel_index(np.where(svectori)[0], (ydim, xdim))
return ydim, xdim, write_rows.astype(np.uint16), write_cols.astype(np.uint16), read_i
def __FasterDIDSONRead(self, file, start_frame, end_frame):
""" Load raw frames from DIDSON.
Parameters
----------
file : file-like object, string, or pathlib.Path
The DIDSON or ARIS file to read.
info : dict
Dictionary of extracted headers and computed sonar values.
start_frame : int
Zero-indexed start of frame range (inclusive).
end_frame : int
End of frame range (exclusive).
Returns
-------
raw_frames : (end_frame - start_frame, framesize) ndarray, np.uint8
Extracted and flattened raw sonar measurements for frame range.
"""
if hasattr(file, 'read'):
file_ctx = contextlib.nullcontext(file)
else:
file_ctx = open(file, 'rb')
with file_ctx as fid:
framesize = self.info['samplesperchannel'] * self.info['numbeams']
frameheadersize = self.info['frameheadersize']
fid.seek(self.info['fileheadersize'] + start_frame * (frameheadersize + framesize) + frameheadersize, 0)
return np.array([
np.frombuffer(fid.read(framesize + frameheadersize)[:framesize], dtype=np.uint8)
for _ in range(end_frame - start_frame)
],
dtype=np.uint8)
def load_frames(self, file=None, start_frame=-1, end_frame=-1):
""" Load and warp DIDSON frames into images.
Parameters
----------
file : file-like object, string, or pathlib.Path, optional
The DIDSON or ARIS file to read. Defaults to `filename` in `info`.
start_frame : int, optional
Zero-indexed start of frame range (inclusive). Defaults to the first available.
end_frame : int, optional
End of frame range (exclusive). Defaults to the last available frame.
Returns
-------
frames : (end_frame - start_frame, ydim, xdim) ndarray, np.uint8
Warped-to-scale sonar image tensor.
"""
if file is None:
file = self.info['filename']
if hasattr(file, 'read'):
file_ctx = contextlib.nullcontext(file)
else:
file_ctx = open(file, 'rb')
with file_ctx as fid:
svector = None
if start_frame == -1:
start_frame = self.info['startframe']
if end_frame == -1:
end_frame = self.info['endframe'] or self.info['numframes']
data = self.__FasterDIDSONRead(fid, start_frame, end_frame)
frames = np.zeros((end_frame - start_frame, self.info['ydim'], self.info['xdim']), dtype=np.uint8)
frames[:, self.write_rows, self.write_cols] = data[:, self.read_i]
return frames
@staticmethod
def save_frames(path, frames, pad_zeros=False, multiprocessing=False, ydim=None, xdim=None, quality='web_high'):
""" Save frames as JPEG images.
Parameters
----------
path : string or pathlib.Path
Directory to output images to or zip file.
frames : (end_frame - start_frame, ydim, xdim) ndarray, np.uint8
Warped-to-scale sonar image tensor.
pad_zeros : bool, optional
If enabled adds appropriately padded zeros to filenames so alphabetic sort of images returns expected
ordering. Note that this option is turned off by default for compatibility with vatic.js which requires
that filenames are not padded.
multiprocessing : bool, optional
If enabled adds multi-process optimization for writing images.
ydim : int, optional
If provided resizes image to given ydim before saving.
xdim : int, optional
If provided resizes image to given xdim before saving.
quality : int or str
Either integer 1-100 or JPEG compression preset seen here:
https://github.com/python-pillow/Pillow/blob/master/src/PIL/JpegPresets.py
"""
path = str(path)
to_zip = path.endswith('.zip')
if to_zip:
path = os.path.splitext(path)[0]
if not os.path.exists(path):
os.mkdir(path)
if pad_zeros:
filename = f'{path}/{{:0{int(np.ceil(np.log10(len(frames))))}}}.jpg'
else:
filename = f'{path}/{{}}.jpg'
ydim = ydim or frames.shape[1]
xdim = xdim or frames.shape[2]
viridis = get_cmap()
def f(n):
Image.fromarray(viridis(n[1], bytes=True)[..., :3]).resize((xdim, ydim)).save(filename.format(n[0]),
quality=quality)
ns = enumerate(frames)
if multiprocessing:
__mpmap(f, ns)
else:
list(map(f, ns))
if to_zip:
make_archive(path, 'zip', path)
rmtree(path)
def __mpmap(func, iterable, processes=os.cpu_count() - 1, niceness=1, threading=False, flatten=False):
""" Helper function to add simple multiprocessing capabilities.
Parameters
----------
func : function
Function to be mapped.
iterable : iterable
Domain to be mapped over.
processes : int, optional
Number of processes to spawn. Default is one for all but one CPU core.
niceness : int, optional
Process niceness.
threading : bool, optional
If enabled replaces multiprocessing with multithreading
flatten : bool, optional
If enabled chains map output together before returning.
Returns
-------
output : list
Image of mapped func over iterable.
"""
import multiprocess as mp
import multiprocess.dummy
def initializer():
os.nice(niceness)
pool_class = mp.dummy.Pool if threading else mp.Pool
pool = pool_class(processes=processes, initializer=initializer)
out = pool.map(func, iterable)
if flatten:
out = list(itertools.chain.from_iterable(out))
pool.close()
pool.join()
return out
|