File size: 18,784 Bytes
82ee3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
<div align="center">
  <img src="./.asset/grounding_dino_logo.png" width="30%">
</div>

# :sauropod: Grounding DINO 

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)


**[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)** 

[Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.


[[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]


PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.

## :sun_with_face: Helpful Tutorial

- :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
- :apple:  [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
- :blossom:   &nbsp;[[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
- :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
- :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
- :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
- :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
- :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]

<!-- Grounding DINO Methods | 
[![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499) 
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) -->

<!-- Grounding DINO Demos |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
<!-- [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk)
[![HuggingFace space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/oEQYStnF2l8)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/C4NqaRBz_Kw) -->

## :sparkles: Highlight Projects

- [Semantic-SAM: a universal image segmentation model to enable segment and recognize anything at any desired granularity.](https://github.com/UX-Decoder/Semantic-SAM), 
- [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
- [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
- [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
- [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
- [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
- [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
- [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)

<!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb)  -->



<!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->


## :bulb: Highlight

- **Open-Set Detection.** Detect **everything** with language!
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.




## :fire: News
- **`2023/07/18`**: We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. **Code** and **checkpoint** are available!
- **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
- **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN)  for more controllable image editings.
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
- **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
- **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
- **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
- **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/22`**: Code is available Now!

<details open>
<summary><font size="4">
Description
</font></summary>
 <a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
<img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
</details>

## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
- Grounding DINO accepts an `(image, text)` pair as inputs.
- It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
- We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
- We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
- If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs. 
- Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
- We suggest separating different category names with `.` for Grounding DINO.
![model_explain1](.asset/model_explan1.PNG)
![model_explain2](.asset/model_explan2.PNG)

## :label: TODO 

- [x] Release inference code and demo.
- [x] Release checkpoints.
- [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
- [ ] Release training codes.

## :hammer_and_wrench: Install 

**Note:**

0. If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.

Please make sure following the installation steps strictly, otherwise the program may produce: 
```bash
NameError: name '_C' is not defined
```

If this happened, please reinstalled the groundingDINO by reclone the git and do all the installation steps again.
 
#### how to check cuda:
```bash
echo $CUDA_HOME
```
If it print nothing, then it means you haven't set up the path/

Run this so the environment variable will be set under current shell. 
```bash
export CUDA_HOME=/path/to/cuda-11.3
```

Notice the version of cuda should be aligned with your CUDA runtime, for there might exists multiple cuda at the same time. 

If you want to set the CUDA_HOME permanently, store it using:

```bash
echo 'export CUDA_HOME=/path/to/cuda' >> ~/.bashrc
```
after that, source the bashrc file and check CUDA_HOME:
```bash
source ~/.bashrc
echo $CUDA_HOME
```

In this example, /path/to/cuda-11.3 should be replaced with the path where your CUDA toolkit is installed. You can find this by typing **which nvcc** in your terminal:

For instance, 
if the output is /usr/local/cuda/bin/nvcc, then:
```bash
export CUDA_HOME=/usr/local/cuda
```
**Installation:**

1.Clone the GroundingDINO repository from GitHub.

```bash
git clone https://github.com/IDEA-Research/GroundingDINO.git
```

2. Change the current directory to the GroundingDINO folder.

```bash
cd GroundingDINO/
```

3. Install the required dependencies in the current directory.

```bash
pip install -e .
```

4. Download pre-trained model weights.

```bash
mkdir weights
cd weights
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ..
```

## :arrow_forward: Demo
Check your GPU ID (only if you're using a GPU)

```bash
nvidia-smi
```
Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p weights/groundingdino_swint_ogc.pth \
-i image_you_want_to_detect.jpg \
-o "dir you want to save the output" \
-t "chair"
 [--cpu-only] # open it for cpu mode
```

If you would like to specify the phrases to detect, here is a demo:
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p ./groundingdino_swint_ogc.pth \
-i .asset/cat_dog.jpeg \
-o logs/1111 \
-t "There is a cat and a dog in the image ." \
--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
 [--cpu-only] # open it for cpu mode
```
The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.

See the `demo/inference_on_a_image.py` for more details.

**Running with Python:**

```python
from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2

model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
IMAGE_PATH = "weights/dog-3.jpeg"
TEXT_PROMPT = "chair . person . dog ."
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25

image_source, image = load_image(IMAGE_PATH)

boxes, logits, phrases = predict(
    model=model,
    image=image,
    caption=TEXT_PROMPT,
    box_threshold=BOX_TRESHOLD,
    text_threshold=TEXT_TRESHOLD
)

annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
cv2.imwrite("annotated_image.jpg", annotated_frame)
```
**Web UI**

We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.

**Notebooks**

- We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN)  for more controllable image editings.
- We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.

## COCO Zero-shot Evaluations

We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.

```bash
CUDA_VISIBLE_DEVICES=0 \
python demo/test_ap_on_coco.py \
 -c groundingdino/config/GroundingDINO_SwinT_OGC.py \
 -p weights/groundingdino_swint_ogc.pth \
 --anno_path /path/to/annoataions/ie/instances_val2017.json \
 --image_dir /path/to/imagedir/ie/val2017
```


## :luggage: Checkpoints

<!-- insert a table -->
<table>
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>name</th>
      <th>backbone</th>
      <th>Data</th>
      <th>box AP on COCO</th>
      <th>Checkpoint</th>
      <th>Config</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>1</th>
      <td>GroundingDINO-T</td>
      <td>Swin-T</td>
      <td>O365,GoldG,Cap4M</td>
      <td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
      <td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
      <td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
    </tr>
    <tr>
      <th>2</th>
      <td>GroundingDINO-B</td>
      <td>Swin-B</td>
      <td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
      <td>56.7 </td>
      <td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a>  | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a> 
      <td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB_cfg.py">link</a></td>
    </tr>
  </tbody>
</table>

## :medal_military: Results

<details open>
<summary><font size="4">
COCO Object Detection Results
</font></summary>
<img src=".asset/COCO.png" alt="COCO" width="100%">
</details>

<details open>
<summary><font size="4">
ODinW Object Detection Results
</font></summary>
<img src=".asset/ODinW.png" alt="ODinW" width="100%">
</details>

<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
</details>


<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
</details>

## :sauropod: Model: Grounding DINO

Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.

![arch](.asset/arch.png)


## :hearts: Acknowledgement

Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!

We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.

Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.


## :black_nib: Citation

If you find our work helpful for your research, please consider citing the following BibTeX entry.   

```bibtex
@article{liu2023grounding,
  title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
  author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
  journal={arXiv preprint arXiv:2303.05499},
  year={2023}
}
```