Spaces:
Build error
Build error
File size: 10,579 Bytes
2de1f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import (build_norm_layer, constant_init, normal_init,
trunc_normal_init)
from mmcv.runner import _load_checkpoint, load_state_dict
from ...utils import get_root_logger
from ..builder import BACKBONES
from ..utils import (PatchEmbed, TCFormerDynamicBlock, TCFormerRegularBlock,
TokenConv, cluster_dpc_knn, merge_tokens,
tcformer_convert, token2map)
class CTM(nn.Module):
"""Clustering-based Token Merging module in TCFormer.
Args:
sample_ratio (float): The sample ratio of tokens.
embed_dim (int): Input token feature dimension.
dim_out (int): Output token feature dimension.
k (int): number of the nearest neighbor used i DPC-knn algorithm.
"""
def __init__(self, sample_ratio, embed_dim, dim_out, k=5):
super().__init__()
self.sample_ratio = sample_ratio
self.dim_out = dim_out
self.conv = TokenConv(
in_channels=embed_dim,
out_channels=dim_out,
kernel_size=3,
stride=2,
padding=1)
self.norm = nn.LayerNorm(self.dim_out)
self.score = nn.Linear(self.dim_out, 1)
self.k = k
def forward(self, token_dict):
token_dict = token_dict.copy()
x = self.conv(token_dict)
x = self.norm(x)
token_score = self.score(x)
token_weight = token_score.exp()
token_dict['x'] = x
B, N, C = x.shape
token_dict['token_score'] = token_score
cluster_num = max(math.ceil(N * self.sample_ratio), 1)
idx_cluster, cluster_num = cluster_dpc_knn(token_dict, cluster_num,
self.k)
down_dict = merge_tokens(token_dict, idx_cluster, cluster_num,
token_weight)
H, W = token_dict['map_size']
H = math.floor((H - 1) / 2 + 1)
W = math.floor((W - 1) / 2 + 1)
down_dict['map_size'] = [H, W]
return down_dict, token_dict
@BACKBONES.register_module()
class TCFormer(nn.Module):
"""Token Clustering Transformer (TCFormer)
Implementation of `Not All Tokens Are Equal: Human-centric Visual
Analysis via Token Clustering Transformer
<https://arxiv.org/abs/2204.08680>`
Args:
in_channels (int): Number of input channels. Default: 3.
embed_dims (list[int]): Embedding dimension. Default:
[64, 128, 256, 512].
num_heads (Sequence[int]): The attention heads of each transformer
encode layer. Default: [1, 2, 5, 8].
mlp_ratios (Sequence[int]): The ratio of the mlp hidden dim to the
embedding dim of each transformer block.
qkv_bias (bool): Enable bias for qkv if True. Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
drop_rate (float): Probability of an element to be zeroed.
Default 0.0.
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.0.
drop_path_rate (float): stochastic depth rate. Default 0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', eps=1e-6).
num_layers (Sequence[int]): The layer number of each transformer encode
layer. Default: [3, 4, 6, 3].
sr_ratios (Sequence[int]): The spatial reduction rate of each
transformer block. Default: [8, 4, 2, 1].
num_stages (int): The num of stages. Default: 4.
pretrained (str, optional): model pretrained path. Default: None.
k (int): number of the nearest neighbor used for local density.
sample_ratios (list[float]): The sample ratios of CTM modules.
Default: [0.25, 0.25, 0.25]
return_map (bool): If True, transfer dynamic tokens to feature map at
last. Default: False
convert_weights (bool): The flag indicates whether the
pre-trained model is from the original repo. We may need
to convert some keys to make it compatible.
Default: True.
"""
def __init__(self,
in_channels=3,
embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6),
num_layers=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
num_stages=4,
pretrained=None,
k=5,
sample_ratios=[0.25, 0.25, 0.25],
return_map=False,
convert_weights=True):
super().__init__()
self.num_layers = num_layers
self.num_stages = num_stages
self.grid_stride = sr_ratios[0]
self.embed_dims = embed_dims
self.sr_ratios = sr_ratios
self.mlp_ratios = mlp_ratios
self.sample_ratios = sample_ratios
self.return_map = return_map
self.convert_weights = convert_weights
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, drop_path_rate, sum(num_layers))
]
cur = 0
# In stage 1, use the standard transformer blocks
for i in range(1):
patch_embed = PatchEmbed(
in_channels=in_channels if i == 0 else embed_dims[i - 1],
embed_dims=embed_dims[i],
kernel_size=7,
stride=4,
padding=3,
bias=True,
norm_cfg=dict(type='LN', eps=1e-6))
block = nn.ModuleList([
TCFormerRegularBlock(
dim=embed_dims[i],
num_heads=num_heads[i],
mlp_ratio=mlp_ratios[i],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + j],
norm_cfg=norm_cfg,
sr_ratio=sr_ratios[i]) for j in range(num_layers[i])
])
norm = build_norm_layer(norm_cfg, embed_dims[i])[1]
cur += num_layers[i]
setattr(self, f'patch_embed{i + 1}', patch_embed)
setattr(self, f'block{i + 1}', block)
setattr(self, f'norm{i + 1}', norm)
# In stage 2~4, use TCFormerDynamicBlock for dynamic tokens
for i in range(1, num_stages):
ctm = CTM(sample_ratios[i - 1], embed_dims[i - 1], embed_dims[i],
k)
block = nn.ModuleList([
TCFormerDynamicBlock(
dim=embed_dims[i],
num_heads=num_heads[i],
mlp_ratio=mlp_ratios[i],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + j],
norm_cfg=norm_cfg,
sr_ratio=sr_ratios[i]) for j in range(num_layers[i])
])
norm = build_norm_layer(norm_cfg, embed_dims[i])[1]
cur += num_layers[i]
setattr(self, f'ctm{i}', ctm)
setattr(self, f'block{i + 1}', block)
setattr(self, f'norm{i + 1}', norm)
self.init_weights(pretrained)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
checkpoint = _load_checkpoint(
pretrained, logger=logger, map_location='cpu')
logger.warning(f'Load pre-trained model for '
f'{self.__class__.__name__} from original repo')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
if self.convert_weights:
# We need to convert pre-trained weights to match this
# implementation.
state_dict = tcformer_convert(state_dict)
load_state_dict(self, state_dict, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_init(m, std=.02, bias=0.)
elif isinstance(m, nn.LayerNorm):
constant_init(m, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[
1] * m.out_channels
fan_out //= m.groups
normal_init(m, 0, math.sqrt(2.0 / fan_out))
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
outs = []
i = 0
patch_embed = getattr(self, f'patch_embed{i + 1}')
block = getattr(self, f'block{i + 1}')
norm = getattr(self, f'norm{i + 1}')
x, (H, W) = patch_embed(x)
for blk in block:
x = blk(x, H, W)
x = norm(x)
# init token dict
B, N, _ = x.shape
device = x.device
idx_token = torch.arange(N)[None, :].repeat(B, 1).to(device)
agg_weight = x.new_ones(B, N, 1)
token_dict = {
'x': x,
'token_num': N,
'map_size': [H, W],
'init_grid_size': [H, W],
'idx_token': idx_token,
'agg_weight': agg_weight
}
outs.append(token_dict.copy())
# stage 2~4
for i in range(1, self.num_stages):
ctm = getattr(self, f'ctm{i}')
block = getattr(self, f'block{i + 1}')
norm = getattr(self, f'norm{i + 1}')
token_dict = ctm(token_dict) # down sample
for j, blk in enumerate(block):
token_dict = blk(token_dict)
token_dict['x'] = norm(token_dict['x'])
outs.append(token_dict)
if self.return_map:
outs = [token2map(token_dict) for token_dict in outs]
return outs
|