Spaces:
Build error
Build error
File size: 10,666 Bytes
2de1f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, constant_init, normal_init
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
from .utils import channel_shuffle, load_checkpoint
class InvertedResidual(nn.Module):
"""InvertedResidual block for ShuffleNetV2 backbone.
Args:
in_channels (int): The input channels of the block.
out_channels (int): The output channels of the block.
stride (int): Stride of the 3x3 convolution layer. Default: 1
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
in_channels,
out_channels,
stride=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
act_cfg = copy.deepcopy(act_cfg)
super().__init__()
self.stride = stride
self.with_cp = with_cp
branch_features = out_channels // 2
if self.stride == 1:
assert in_channels == branch_features * 2, (
f'in_channels ({in_channels}) should equal to '
f'branch_features * 2 ({branch_features * 2}) '
'when stride is 1')
if in_channels != branch_features * 2:
assert self.stride != 1, (
f'stride ({self.stride}) should not equal 1 when '
f'in_channels != branch_features * 2')
if self.stride > 1:
self.branch1 = nn.Sequential(
ConvModule(
in_channels,
in_channels,
kernel_size=3,
stride=self.stride,
padding=1,
groups=in_channels,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None),
ConvModule(
in_channels,
branch_features,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
)
self.branch2 = nn.Sequential(
ConvModule(
in_channels if (self.stride > 1) else branch_features,
branch_features,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
ConvModule(
branch_features,
branch_features,
kernel_size=3,
stride=self.stride,
padding=1,
groups=branch_features,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None),
ConvModule(
branch_features,
branch_features,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, x):
def _inner_forward(x):
if self.stride > 1:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
else:
x1, x2 = x.chunk(2, dim=1)
out = torch.cat((x1, self.branch2(x2)), dim=1)
out = channel_shuffle(out, 2)
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
@BACKBONES.register_module()
class ShuffleNetV2(BaseBackbone):
"""ShuffleNetV2 backbone.
Args:
widen_factor (float): Width multiplier - adjusts the number of
channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int]): Output from which stages.
Default: (0, 1, 2, 3).
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
widen_factor=1.0,
out_indices=(3, ),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
norm_eval=False,
with_cp=False):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
act_cfg = copy.deepcopy(act_cfg)
super().__init__()
self.stage_blocks = [4, 8, 4]
for index in out_indices:
if index not in range(0, 4):
raise ValueError('the item in out_indices must in '
f'range(0, 4). But received {index}')
if frozen_stages not in range(-1, 4):
raise ValueError('frozen_stages must be in range(-1, 4). '
f'But received {frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
if widen_factor == 0.5:
channels = [48, 96, 192, 1024]
elif widen_factor == 1.0:
channels = [116, 232, 464, 1024]
elif widen_factor == 1.5:
channels = [176, 352, 704, 1024]
elif widen_factor == 2.0:
channels = [244, 488, 976, 2048]
else:
raise ValueError('widen_factor must be in [0.5, 1.0, 1.5, 2.0]. '
f'But received {widen_factor}')
self.in_channels = 24
self.conv1 = ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layers = nn.ModuleList()
for i, num_blocks in enumerate(self.stage_blocks):
layer = self._make_layer(channels[i], num_blocks)
self.layers.append(layer)
output_channels = channels[-1]
self.layers.append(
ConvModule(
in_channels=self.in_channels,
out_channels=output_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def _make_layer(self, out_channels, num_blocks):
"""Stack blocks to make a layer.
Args:
out_channels (int): out_channels of the block.
num_blocks (int): number of blocks.
"""
layers = []
for i in range(num_blocks):
stride = 2 if i == 0 else 1
layers.append(
InvertedResidual(
in_channels=self.in_channels,
out_channels=out_channels,
stride=stride,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
with_cp=self.with_cp))
self.in_channels = out_channels
return nn.Sequential(*layers)
def _freeze_stages(self):
if self.frozen_stages >= 0:
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for name, m in self.named_modules():
if isinstance(m, nn.Conv2d):
if 'conv1' in name:
normal_init(m, mean=0, std=0.01)
else:
normal_init(m, mean=0, std=1.0 / m.weight.shape[1])
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m.weight, val=1, bias=0.0001)
if isinstance(m, _BatchNorm):
if m.running_mean is not None:
nn.init.constant_(m.running_mean, 0)
else:
raise TypeError('pretrained must be a str or None. But received '
f'{type(pretrained)}')
def forward(self, x):
x = self.conv1(x)
x = self.maxpool(x)
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
return tuple(outs)
def train(self, mode=True):
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
|