File size: 12,124 Bytes
2de1f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer

from ..builder import BACKBONES
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResLayer, ResNetV1d


class RSoftmax(nn.Module):
    """Radix Softmax module in ``SplitAttentionConv2d``.

    Args:
        radix (int): Radix of input.
        groups (int): Groups of input.
    """

    def __init__(self, radix, groups):
        super().__init__()
        self.radix = radix
        self.groups = groups

    def forward(self, x):
        batch = x.size(0)
        if self.radix > 1:
            x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2)
            x = F.softmax(x, dim=1)
            x = x.reshape(batch, -1)
        else:
            x = torch.sigmoid(x)
        return x


class SplitAttentionConv2d(nn.Module):
    """Split-Attention Conv2d.

    Args:
        in_channels (int): Same as nn.Conv2d.
        out_channels (int): Same as nn.Conv2d.
        kernel_size (int | tuple[int]): Same as nn.Conv2d.
        stride (int | tuple[int]): Same as nn.Conv2d.
        padding (int | tuple[int]): Same as nn.Conv2d.
        dilation (int | tuple[int]): Same as nn.Conv2d.
        groups (int): Same as nn.Conv2d.
        radix (int): Radix of SpltAtConv2d. Default: 2
        reduction_factor (int): Reduction factor of SplitAttentionConv2d.
            Default: 4.
        conv_cfg (dict): Config dict for convolution layer. Default: None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
    """

    def __init__(self,
                 in_channels,
                 channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 radix=2,
                 reduction_factor=4,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super().__init__()
        inter_channels = max(in_channels * radix // reduction_factor, 32)
        self.radix = radix
        self.groups = groups
        self.channels = channels
        self.conv = build_conv_layer(
            conv_cfg,
            in_channels,
            channels * radix,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups * radix,
            bias=False)
        self.norm0_name, norm0 = build_norm_layer(
            norm_cfg, channels * radix, postfix=0)
        self.add_module(self.norm0_name, norm0)
        self.relu = nn.ReLU(inplace=True)
        self.fc1 = build_conv_layer(
            None, channels, inter_channels, 1, groups=self.groups)
        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, inter_channels, postfix=1)
        self.add_module(self.norm1_name, norm1)
        self.fc2 = build_conv_layer(
            None, inter_channels, channels * radix, 1, groups=self.groups)
        self.rsoftmax = RSoftmax(radix, groups)

    @property
    def norm0(self):
        return getattr(self, self.norm0_name)

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    def forward(self, x):
        x = self.conv(x)
        x = self.norm0(x)
        x = self.relu(x)

        batch, rchannel = x.shape[:2]
        if self.radix > 1:
            splits = x.view(batch, self.radix, -1, *x.shape[2:])
            gap = splits.sum(dim=1)
        else:
            gap = x
        gap = F.adaptive_avg_pool2d(gap, 1)
        gap = self.fc1(gap)

        gap = self.norm1(gap)
        gap = self.relu(gap)

        atten = self.fc2(gap)
        atten = self.rsoftmax(atten).view(batch, -1, 1, 1)

        if self.radix > 1:
            attens = atten.view(batch, self.radix, -1, *atten.shape[2:])
            out = torch.sum(attens * splits, dim=1)
        else:
            out = atten * x
        return out.contiguous()


class Bottleneck(_Bottleneck):
    """Bottleneck block for ResNeSt.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        groups (int): Groups of conv2.
        width_per_group (int): Width per group of conv2. 64x4d indicates
            ``groups=64, width_per_group=4`` and 32x8d indicates
            ``groups=32, width_per_group=8``.
        radix (int): Radix of SpltAtConv2d. Default: 2
        reduction_factor (int): Reduction factor of SplitAttentionConv2d.
            Default: 4.
        avg_down_stride (bool): Whether to use average pool for stride in
            Bottleneck. Default: True.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module): downsample operation on identity branch.
            Default: None
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 groups=1,
                 width_per_group=4,
                 base_channels=64,
                 radix=2,
                 reduction_factor=4,
                 avg_down_stride=True,
                 **kwargs):
        super().__init__(in_channels, out_channels, **kwargs)

        self.groups = groups
        self.width_per_group = width_per_group

        # For ResNet bottleneck, middle channels are determined by expansion
        # and out_channels, but for ResNeXt bottleneck, it is determined by
        # groups and width_per_group and the stage it is located in.
        if groups != 1:
            assert self.mid_channels % base_channels == 0
            self.mid_channels = (
                groups * width_per_group * self.mid_channels // base_channels)

        self.avg_down_stride = avg_down_stride and self.conv2_stride > 1

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, self.mid_channels, postfix=1)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = SplitAttentionConv2d(
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=1 if self.avg_down_stride else self.conv2_stride,
            padding=self.dilation,
            dilation=self.dilation,
            groups=groups,
            radix=radix,
            reduction_factor=reduction_factor,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg)
        delattr(self, self.norm2_name)

        if self.avg_down_stride:
            self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1)

        self.conv3 = build_conv_layer(
            self.conv_cfg,
            self.mid_channels,
            self.out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)

            if self.avg_down_stride:
                out = self.avd_layer(out)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


@BACKBONES.register_module()
class ResNeSt(ResNetV1d):
    """ResNeSt backbone.

    Please refer to the `paper <https://arxiv.org/pdf/2004.08955.pdf>`__
    for details.

    Args:
        depth (int): Network depth, from {50, 101, 152, 200}.
        groups (int): Groups of conv2 in Bottleneck. Default: 32.
        width_per_group (int): Width per group of conv2 in Bottleneck.
            Default: 4.
        radix (int): Radix of SpltAtConv2d. Default: 2
        reduction_factor (int): Reduction factor of SplitAttentionConv2d.
            Default: 4.
        avg_down_stride (bool): Whether to use average pool for stride in
            Bottleneck. Default: True.
        in_channels (int): Number of input image channels. Default: 3.
        stem_channels (int): Output channels of the stem layer. Default: 64.
        num_stages (int): Stages of the network. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
            Default: ``(1, 2, 2, 2)``.
        dilations (Sequence[int]): Dilation of each stage.
            Default: ``(1, 1, 1, 1)``.
        out_indices (Sequence[int]): Output from which stages. If only one
            stage is specified, a single tensor (feature map) is returned,
            otherwise multiple stages are specified, a tuple of tensors will
            be returned. Default: ``(3, )``.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
            Default: False.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Default: -1.
        conv_cfg (dict | None): The config dict for conv layers. Default: None.
        norm_cfg (dict): The config dict for norm layers.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: True.
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3)),
        200: (Bottleneck, (3, 24, 36, 3)),
        269: (Bottleneck, (3, 30, 48, 8))
    }

    def __init__(self,
                 depth,
                 groups=1,
                 width_per_group=4,
                 radix=2,
                 reduction_factor=4,
                 avg_down_stride=True,
                 **kwargs):
        self.groups = groups
        self.width_per_group = width_per_group
        self.radix = radix
        self.reduction_factor = reduction_factor
        self.avg_down_stride = avg_down_stride
        super().__init__(depth=depth, **kwargs)

    def make_res_layer(self, **kwargs):
        return ResLayer(
            groups=self.groups,
            width_per_group=self.width_per_group,
            base_channels=self.base_channels,
            radix=self.radix,
            reduction_factor=self.reduction_factor,
            avg_down_stride=self.avg_down_stride,
            **kwargs)