Spaces:
Build error
Build error
File size: 9,830 Bytes
2de1f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from nets.layer import make_conv_layers, make_linear_layers, make_deconv_layers
from utils.transforms import sample_joint_features, soft_argmax_2d, soft_argmax_3d
from utils.human_models import smpl_x
from config import cfg
from mmcv.ops.roi_align import roi_align
class PositionNet(nn.Module):
def __init__(self, part, feat_dim=768):
super(PositionNet, self).__init__()
if part == 'body':
self.joint_num = len(smpl_x.pos_joint_part['body'])
self.hm_shape = cfg.output_hm_shape
elif part == 'hand':
self.joint_num = len(smpl_x.pos_joint_part['rhand'])
self.hm_shape = cfg.output_hand_hm_shape
self.conv = make_conv_layers([feat_dim, self.joint_num * self.hm_shape[0]], kernel=1, stride=1, padding=0, bnrelu_final=False)
def forward(self, img_feat):
joint_hm = self.conv(img_feat).view(-1, self.joint_num, self.hm_shape[0], self.hm_shape[1], self.hm_shape[2])
joint_coord = soft_argmax_3d(joint_hm)
joint_hm = F.softmax(joint_hm.view(-1, self.joint_num, self.hm_shape[0] * self.hm_shape[1] * self.hm_shape[2]), 2)
joint_hm = joint_hm.view(-1, self.joint_num, self.hm_shape[0], self.hm_shape[1], self.hm_shape[2])
return joint_hm, joint_coord
class HandRotationNet(nn.Module):
def __init__(self, part, feat_dim = 768):
super(HandRotationNet, self).__init__()
self.part = part
self.joint_num = len(smpl_x.pos_joint_part['rhand'])
self.hand_conv = make_conv_layers([feat_dim, 512], kernel=1, stride=1, padding=0)
self.hand_pose_out = make_linear_layers([self.joint_num * 515, len(smpl_x.orig_joint_part['rhand']) * 6], relu_final=False)
self.feat_dim = feat_dim
def forward(self, img_feat, joint_coord_img):
batch_size = img_feat.shape[0]
img_feat = self.hand_conv(img_feat)
img_feat_joints = sample_joint_features(img_feat, joint_coord_img[:, :, :2])
feat = torch.cat((img_feat_joints, joint_coord_img), 2) # batch_size, joint_num, 512+3
hand_pose = self.hand_pose_out(feat.view(batch_size, -1))
return hand_pose
class BodyRotationNet(nn.Module):
def __init__(self, feat_dim = 768):
super(BodyRotationNet, self).__init__()
self.joint_num = len(smpl_x.pos_joint_part['body'])
self.body_conv = make_linear_layers([feat_dim, 512], relu_final=False)
self.root_pose_out = make_linear_layers([self.joint_num * (512+3), 6], relu_final=False)
self.body_pose_out = make_linear_layers(
[self.joint_num * (512+3), (len(smpl_x.orig_joint_part['body']) - 1) * 6], relu_final=False) # without root
self.shape_out = make_linear_layers([feat_dim, smpl_x.shape_param_dim], relu_final=False)
self.cam_out = make_linear_layers([feat_dim, 3], relu_final=False)
self.feat_dim = feat_dim
def forward(self, body_pose_token, shape_token, cam_token, body_joint_img):
batch_size = body_pose_token.shape[0]
# shape parameter
shape_param = self.shape_out(shape_token)
# camera parameter
cam_param = self.cam_out(cam_token)
# body pose parameter
body_pose_token = self.body_conv(body_pose_token)
body_pose_token = torch.cat((body_pose_token, body_joint_img), 2)
root_pose = self.root_pose_out(body_pose_token.view(batch_size, -1))
body_pose = self.body_pose_out(body_pose_token.view(batch_size, -1))
return root_pose, body_pose, shape_param, cam_param
class FaceRegressor(nn.Module):
def __init__(self, feat_dim=768):
super(FaceRegressor, self).__init__()
self.expr_out = make_linear_layers([feat_dim, smpl_x.expr_code_dim], relu_final=False)
self.jaw_pose_out = make_linear_layers([feat_dim, 6], relu_final=False)
def forward(self, expr_token, jaw_pose_token):
expr_param = self.expr_out(expr_token) # expression parameter
jaw_pose = self.jaw_pose_out(jaw_pose_token) # jaw pose parameter
return expr_param, jaw_pose
class BoxNet(nn.Module):
def __init__(self, feat_dim=768):
super(BoxNet, self).__init__()
self.joint_num = len(smpl_x.pos_joint_part['body'])
self.deconv = make_deconv_layers([feat_dim + self.joint_num * cfg.output_hm_shape[0], 256, 256, 256])
self.bbox_center = make_conv_layers([256, 3], kernel=1, stride=1, padding=0, bnrelu_final=False)
self.lhand_size = make_linear_layers([256, 256, 2], relu_final=False)
self.rhand_size = make_linear_layers([256, 256, 2], relu_final=False)
self.face_size = make_linear_layers([256, 256, 2], relu_final=False)
def forward(self, img_feat, joint_hm):
joint_hm = joint_hm.view(joint_hm.shape[0], joint_hm.shape[1] * cfg.output_hm_shape[0], cfg.output_hm_shape[1], cfg.output_hm_shape[2])
img_feat = torch.cat((img_feat, joint_hm), 1)
img_feat = self.deconv(img_feat)
# bbox center
bbox_center_hm = self.bbox_center(img_feat)
bbox_center = soft_argmax_2d(bbox_center_hm)
lhand_center, rhand_center, face_center = bbox_center[:, 0, :], bbox_center[:, 1, :], bbox_center[:, 2, :]
# bbox size
lhand_feat = sample_joint_features(img_feat, lhand_center[:, None, :].detach())[:, 0, :]
lhand_size = self.lhand_size(lhand_feat)
rhand_feat = sample_joint_features(img_feat, rhand_center[:, None, :].detach())[:, 0, :]
rhand_size = self.rhand_size(rhand_feat)
face_feat = sample_joint_features(img_feat, face_center[:, None, :].detach())[:, 0, :]
face_size = self.face_size(face_feat)
lhand_center = lhand_center / 8
rhand_center = rhand_center / 8
face_center = face_center / 8
return lhand_center, lhand_size, rhand_center, rhand_size, face_center, face_size
class BoxSizeNet(nn.Module):
def __init__(self):
super(BoxSizeNet, self).__init__()
self.lhand_size = make_linear_layers([256, 256, 2], relu_final=False)
self.rhand_size = make_linear_layers([256, 256, 2], relu_final=False)
self.face_size = make_linear_layers([256, 256, 2], relu_final=False)
def forward(self, box_fea):
# box_fea: [bs, 3, C]
lhand_size = self.lhand_size(box_fea[:, 0])
rhand_size = self.rhand_size(box_fea[:, 1])
face_size = self.face_size(box_fea[:, 2])
return lhand_size, rhand_size, face_size
class HandRoI(nn.Module):
def __init__(self, feat_dim=768, upscale=4):
super(HandRoI, self).__init__()
self.upscale = upscale
if upscale==1:
self.deconv = make_conv_layers([feat_dim, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False)
self.conv = make_conv_layers([feat_dim, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False)
elif upscale==2:
self.deconv = make_deconv_layers([feat_dim, feat_dim//2])
self.conv = make_conv_layers([feat_dim//2, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False)
elif upscale==4:
self.deconv = make_deconv_layers([feat_dim, feat_dim//2, feat_dim//4])
self.conv = make_conv_layers([feat_dim//4, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False)
elif upscale==8:
self.deconv = make_deconv_layers([feat_dim, feat_dim//2, feat_dim//4, feat_dim//8])
self.conv = make_conv_layers([feat_dim//8, feat_dim], kernel=1, stride=1, padding=0, bnrelu_final=False)
def forward(self, img_feat, lhand_bbox, rhand_bbox):
lhand_bbox = torch.cat((torch.arange(lhand_bbox.shape[0]).float().to(cfg.device)[:, None], lhand_bbox),
1) # batch_idx, xmin, ymin, xmax, ymax
rhand_bbox = torch.cat((torch.arange(rhand_bbox.shape[0]).float().to(cfg.device)[:, None], rhand_bbox),
1) # batch_idx, xmin, ymin, xmax, ymax
img_feat = self.deconv(img_feat)
lhand_bbox_roi = lhand_bbox.clone()
lhand_bbox_roi[:, 1] = lhand_bbox_roi[:, 1] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale
lhand_bbox_roi[:, 2] = lhand_bbox_roi[:, 2] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale
lhand_bbox_roi[:, 3] = lhand_bbox_roi[:, 3] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale
lhand_bbox_roi[:, 4] = lhand_bbox_roi[:, 4] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale
assert (cfg.output_hm_shape[1]*self.upscale, cfg.output_hm_shape[2]*self.upscale) == (img_feat.shape[2], img_feat.shape[3])
lhand_img_feat = roi_align(img_feat, lhand_bbox_roi, (cfg.output_hand_hm_shape[1], cfg.output_hand_hm_shape[2]), 1.0, 0, 'avg', False)
lhand_img_feat = torch.flip(lhand_img_feat, [3]) # flip to the right hand
rhand_bbox_roi = rhand_bbox.clone()
rhand_bbox_roi[:, 1] = rhand_bbox_roi[:, 1] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale
rhand_bbox_roi[:, 2] = rhand_bbox_roi[:, 2] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale
rhand_bbox_roi[:, 3] = rhand_bbox_roi[:, 3] / cfg.input_body_shape[1] * cfg.output_hm_shape[2] * self.upscale
rhand_bbox_roi[:, 4] = rhand_bbox_roi[:, 4] / cfg.input_body_shape[0] * cfg.output_hm_shape[1] * self.upscale
rhand_img_feat = roi_align(img_feat, rhand_bbox_roi, (cfg.output_hand_hm_shape[1], cfg.output_hand_hm_shape[2]), 1.0, 0, 'avg', False)
hand_img_feat = torch.cat((lhand_img_feat, rhand_img_feat)) # [bs, c, cfg.output_hand_hm_shape[2]*scale, cfg.output_hand_hm_shape[1]*scale]
hand_img_feat = self.conv(hand_img_feat)
return hand_img_feat |